mirror of
https://github.com/TheAlgorithms/JavaScript.git
synced 2025-07-05 08:16:50 +08:00
merge: Added bisection method (#827)
* feat: Added bisection method * Auto-update DIRECTORY.md Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
46
Maths/BisectionMethod.js
Normal file
46
Maths/BisectionMethod.js
Normal file
@ -0,0 +1,46 @@
|
||||
/**
|
||||
*
|
||||
* @file
|
||||
* @brief Find real roots of a function in a specified interval [a, b], where f(a)*f(b) < 0
|
||||
*
|
||||
* @details Given a function f(x) and an interval [a, b], where f(a) * f(b) < 0, find an approximation of the root
|
||||
* by calculating the middle m = (a + b) / 2, checking f(m) * f(a) and f(m) * f(b) and then by choosing the
|
||||
* negative product that means Bolzano's theorem is applied,, define the new interval with these points. Repeat until
|
||||
* we get the precision we want [Wikipedia](https://en.wikipedia.org/wiki/Bisection_method)
|
||||
*
|
||||
* @author [ggkogkou](https://github.com/ggkogkou)
|
||||
*
|
||||
*/
|
||||
|
||||
const findRoot = (a, b, func, numberOfIterations) => {
|
||||
// Check if a given real value belongs to the function's domain
|
||||
const belongsToDomain = (x, f) => {
|
||||
const res = f(x)
|
||||
return !Number.isNaN(res)
|
||||
}
|
||||
if (!belongsToDomain(a, func) || !belongsToDomain(b, func)) throw Error("Given interval is not a valid subset of function's domain")
|
||||
|
||||
// Bolzano theorem
|
||||
const hasRoot = (a, b, func) => {
|
||||
return func(a) * func(b) < 0
|
||||
}
|
||||
if (hasRoot(a, b, func) === false) { throw Error('Product f(a)*f(b) has to be negative so that Bolzano theorem is applied') }
|
||||
|
||||
// Declare m
|
||||
const m = (a + b) / 2
|
||||
|
||||
// Recursion terminal condition
|
||||
if (numberOfIterations === 0) { return m }
|
||||
|
||||
// Find the products of f(m) and f(a), f(b)
|
||||
const fm = func(m)
|
||||
const prod1 = fm * func(a)
|
||||
const prod2 = fm * func(b)
|
||||
|
||||
// Depending on the sign of the products above, decide which position will m fill (a's or b's)
|
||||
if (prod1 > 0 && prod2 < 0) return findRoot(m, b, func, --numberOfIterations)
|
||||
else if (prod1 < 0 && prod2 > 0) return findRoot(a, m, func, --numberOfIterations)
|
||||
else throw Error('Unexpected behavior')
|
||||
}
|
||||
|
||||
export { findRoot }
|
Reference in New Issue
Block a user