fix: standard style issues

This commit is contained in:
Rak Laptudirm
2021-10-21 22:59:56 +05:30
parent 65916747d8
commit 22ce7603e4
7 changed files with 20 additions and 56 deletions

View File

@ -1,5 +1,5 @@
const pad = (num, padlen) => { const pad = (num, padlen) => {
var pad = new Array(1 + padlen).join(0) const pad = new Array(1 + padlen).join(0)
return (pad + num).slice(-pad.length) return (pad + num).slice(-pad.length)
} }

View File

@ -40,7 +40,7 @@ const orders = [
function decimalToRoman (num) { function decimalToRoman (num) {
let roman = '' let roman = ''
for (var symbol of orders) { for (const symbol of orders) {
while (num >= values[symbol]) { while (num >= values[symbol]) {
roman += symbol roman += symbol
num -= values[symbol] num -= values[symbol]

View File

@ -1,18 +1,16 @@
function hexToInt (hexNum) { function hexToInt (hexNum) {
const numArr = hexNum.split('') // converts number to array const numArr = hexNum.split('') // converts number to array
numArr.map((item, index) => { return numArr.map((item, index) => {
if (!(item > 0)) { switch (item) {
switch (item) { case 'A': return 10
case 'A': return (numArr[index] = 10) case 'B': return 11
case 'B': return (numArr[index] = 11) case 'C': return 12
case 'C': return (numArr[index] = 12) case 'D': return 13
case 'D': return (numArr[index] = 13) case 'E': return 14
case 'E': return (numArr[index] = 14) case 'F': return 15
case 'F': return (numArr[index] = 15) default: return parseInt(item)
} }
} else numArr[index] = parseInt(item)
}) })
return numArr // returns an array only with integer numbers
} }
function hexToDecimal (hexNum) { function hexToDecimal (hexNum) {
@ -23,9 +21,3 @@ function hexToDecimal (hexNum) {
} }
export { hexToInt, hexToDecimal } export { hexToInt, hexToDecimal }
// > hexToDecimal('5DE9A'))
// 384666
// > hexToDecimal('3D'))
// 61

View File

@ -33,9 +33,7 @@ class CircularQueue {
} }
const y = this.queue[this.front] const y = this.queue[this.front]
this.queue[this.front] = '*' this.queue[this.front] = '*'
if (this.checkSingleelement()) { if (!this.checkSingleelement()) {
} else {
if (this.front === this.maxLength) this.front = 1 if (this.front === this.maxLength) this.front = 1
else { else {
this.front += 1 this.front += 1

View File

@ -2,19 +2,19 @@
* Problem statement and explanation: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm * Problem statement and explanation: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
* *
* This algorithm plays an important role for modular arithmetic, and by extension for cyptography algorithms * This algorithm plays an important role for modular arithmetic, and by extension for cyptography algorithms
* *
* Basic explanation: * Basic explanation:
* The Extended Euclidean algorithm is a modification of the standard Euclidean GCD algorithm. * The Extended Euclidean algorithm is a modification of the standard Euclidean GCD algorithm.
* It allows to calculate coefficients x and y for the equation: * It allows to calculate coefficients x and y for the equation:
* ax + by = gcd(a,b) * ax + by = gcd(a,b)
* *
* This is called Bézout's identity and the coefficients are called Bézout coefficients * This is called Bézout's identity and the coefficients are called Bézout coefficients
* *
* The algorithm uses the Euclidean method of getting remainder: * The algorithm uses the Euclidean method of getting remainder:
* r_i+1 = r_i-1 - qi*ri * r_i+1 = r_i-1 - qi*ri
* and applies it to series s and t (with same quotient q at each stage) * and applies it to series s and t (with same quotient q at each stage)
* When r_n reaches 0, the value r_n-1 gives the gcd, and s_n-1 and t_n-1 give the coefficients * When r_n reaches 0, the value r_n-1 gives the gcd, and s_n-1 and t_n-1 give the coefficients
* *
* This implementation uses an iterative approach to calculate the values * This implementation uses an iterative approach to calculate the values
*/ */

View File

@ -1,26 +0,0 @@
// https://projecteuler.net/problem=7
// My approach does not use the Sieve of Eratosthenes but that is another common way to approach this problem. Sieve of Atkin is another possibility as well.
export const calculatePrime = (num = 10001, primes = [2, 3, 5, 7, 11, 13]) => {
// Calculate each next prime by checking each number to see what it's divisible by
let count = primes.length // count number of primes calculated
let current = primes[count - 1] + 1 // current number being assessed if prime
while (count < num) { // repeat while we haven't reached goal number of primes
// go through each prime and see if divisible by the previous primes
let prime = false
primes.some((n, i) => {
if (current % n === 0) {
return true
}
if (i === count - 1) {
prime = true
}
})
if (prime) { // if prime, add to prime list and increment count
primes.push(current)
count += 1
}
current += 1
}
return primes[num - 1]
}

View File

@ -26,7 +26,7 @@
* @param {number} endIndex The end of the subarray * @param {number} endIndex The end of the subarray
* @returns The flipped array * @returns The flipped array
*/ */
export function flipArray(array, startIndex, endIndex) { export function flipArray (array, startIndex, endIndex) {
while (startIndex < endIndex) { while (startIndex < endIndex) {
// swap front and back of the subarray // swap front and back of the subarray
const temp = array[startIndex] const temp = array[startIndex]
@ -49,7 +49,7 @@ export function flipArray(array, startIndex, endIndex) {
* @param {*} endIndex The end of the subarray * @param {*} endIndex The end of the subarray
* @returns The index of the maximum number * @returns The index of the maximum number
*/ */
export function findMax(array, startIndex, endIndex) { export function findMax (array, startIndex, endIndex) {
let maxIndex = 0 let maxIndex = 0
for (let i = startIndex; i <= endIndex; i++) { for (let i = startIndex; i <= endIndex; i++) {
if (array[i] > array[maxIndex]) maxIndex = i if (array[i] > array[maxIndex]) maxIndex = i
@ -67,7 +67,7 @@ export function findMax(array, startIndex, endIndex) {
* @param {number[]} array The array to sort * @param {number[]} array The array to sort
* @returns The sorted array * @returns The sorted array
*/ */
export function pancakeSort(array) { export function pancakeSort (array) {
for (let subarraySize = array.length; subarraySize > 1; subarraySize--) { for (let subarraySize = array.length; subarraySize > 1; subarraySize--) {
const maximumIndex = findMax(array, 0, subarraySize - 1) const maximumIndex = findMax(array, 0, subarraySize - 1)