merge: Created midpoint integration numerical method (#822)

* Created midpoint integration numerical method

* Auto-update DIRECTORY.md

* Added resources link

* Fixed doxumentation

* Fixed spelling error

Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
ggkogkou
2021-10-28 15:39:40 +03:00
committed by GitHub
parent 072523d594
commit 1cd3b8683a
3 changed files with 71 additions and 0 deletions

View File

@ -174,6 +174,7 @@
* [MatrixExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixExponentiationRecursive.js) * [MatrixExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixExponentiationRecursive.js)
* [MatrixMultiplication](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixMultiplication.js) * [MatrixMultiplication](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixMultiplication.js)
* [MeanSquareError](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MeanSquareError.js) * [MeanSquareError](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MeanSquareError.js)
* [MidpointIntegration](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MidpointIntegration.js)
* [ModularBinaryExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/ModularBinaryExponentiationRecursive.js) * [ModularBinaryExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/ModularBinaryExponentiationRecursive.js)
* [NumberOfDigits](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/NumberOfDigits.js) * [NumberOfDigits](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/NumberOfDigits.js)
* [Palindrome](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/Palindrome.js) * [Palindrome](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/Palindrome.js)

View File

@ -0,0 +1,54 @@
/**
*
* @title Midpoint rule for definite integral evaluation
* @author [ggkogkou](https://github.com/ggkogkou)
* @brief Calculate definite integrals with midpoint method
*
* @details The idea is to split the interval in a number N of intervals and use as interpolation points the xi
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
* first and last points of the interval of the integration [a, b].
*
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
*
* N must be > 0 and a<b. By increasing N, we also increase precision
*
* [More info link](https://tutorial.math.lamar.edu/classes/calcii/approximatingdefintegrals.aspx)
*
*/
function integralEvaluation (N, a, b, func) {
// Check if all restrictions are satisfied for the given N, a, b
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) { throw new TypeError('Expected integer N and finite a, b') }
if (N <= 0) { throw Error('N has to be >= 2') } // check if N > 0
if (a > b) { throw Error('a must be less or equal than b') } // Check if a < b
if (a === b) return 0 // If a === b integral is zero
// Calculate the step h
const h = (b - a) / N
// Find interpolation points
let xi = a // initialize xi = x0
const pointsArray = []
// Find the sum {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
let temp
for (let i = 0; i < N; i++) {
temp = func(xi + h / 2)
pointsArray.push(temp)
xi += h
}
// Calculate the integral
let result = h
temp = 0
for (let i = 0; i < pointsArray.length; i++) temp += pointsArray[i]
result *= temp
if (Number.isNaN(result)) { throw Error('Result is NaN. The input interval does not belong to the functions domain') }
return result
}
export { integralEvaluation }

View File

@ -0,0 +1,16 @@
import { integralEvaluation } from '../MidpointIntegration'
test('Should return the integral of f(x) = sqrt(x) in [1, 3] to be equal 2.797434', () => {
const result = integralEvaluation(10000, 1, 3, (x) => { return Math.sqrt(x) })
expect(Number(result.toPrecision(6))).toBe(2.79743)
})
test('Should return the integral of f(x) = sqrt(x) + x^2 in [1, 3] to be equal 11.46410161', () => {
const result = integralEvaluation(10000, 1, 3, (x) => { return Math.sqrt(x) + Math.pow(x, 2) })
expect(Number(result.toPrecision(10))).toBe(11.46410161)
})
test('Should return the integral of f(x) = log(x) + Pi*x^3 in [5, 12] to be equal 15809.9141543', () => {
const result = integralEvaluation(20000, 5, 12, (x) => { return Math.log(x) + Math.PI * Math.pow(x, 3) })
expect(Number(result.toPrecision(10))).toBe(15809.91415)
})