merge: Fix GetEuclidGCD (#1068)

* Fix GetEuclidGCD

Implement the actual Euclidean Algorithm

* Replace == with ===

* Lua > JS

* Standard sucks

* Oops

* Update GetEuclidGCD.js

* Updated Documentation in README.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Lars Müller
2022-07-27 15:13:07 +02:00
committed by GitHub
parent 7d40bb4a29
commit 1a089cc491
2 changed files with 16 additions and 27 deletions

View File

@ -18,6 +18,7 @@
* **Cellular-Automata**
* [ConwaysGameOfLife](Cellular-Automata/ConwaysGameOfLife.js)
* **Ciphers**
* [AffineCipher](Ciphers/AffineCipher.js)
* [Atbash](Ciphers/Atbash.js)
* [CaesarsCipher](Ciphers/CaesarsCipher.js)
* [KeyFinder](Ciphers/KeyFinder.js)

View File

@ -1,32 +1,20 @@
/*
Problem statement and Explanation : https://en.wikipedia.org/wiki/Euclidean_algorithm
In this method, we have followed the iterative approach to first
find a minimum of both numbers and go to the next step.
*/
/**
* GetEuclidGCD return the gcd of two numbers using Euclidean algorithm.
* @param {Number} arg1 first argument for gcd
* @param {Number} arg2 second argument for gcd
* @returns return a `gcd` value of both number.
* GetEuclidGCD Euclidean algorithm to determine the GCD of two numbers
* @param {Number} a integer (may be negative)
* @param {Number} b integer (may be negative)
* @returns {Number} Greatest Common Divisor gcd(a, b)
*/
const GetEuclidGCD = (arg1, arg2) => {
// firstly, check that input is a number or not.
if (typeof arg1 !== 'number' || typeof arg2 !== 'number') {
return new TypeError('Argument is not a number.')
export function GetEuclidGCD (a, b) {
if (typeof a !== 'number' || typeof b !== 'number') {
throw new TypeError('Arguments must be numbers')
}
// check that the input number is not a negative value.
if (arg1 < 1 || arg2 < 1) {
return new TypeError('Argument is a negative number.')
if (a === 0 && b === 0) return undefined // infinitely many numbers divide 0
a = Math.abs(a)
b = Math.abs(b)
while (b !== 0) {
const rem = a % b
a = b
b = rem
}
// Find a minimum of both numbers.
let less = arg1 > arg2 ? arg2 : arg1
// Iterate the number and find the gcd of the number using the above explanation.
for (less; less >= 2; less--) {
if ((arg1 % less === 0) && (arg2 % less === 0)) return (less)
}
return (less)
return a
}
export { GetEuclidGCD }