Files
Java/DataStructures/Trees/BSTRecursive.java
2020-08-17 15:48:52 +05:30

220 lines
5.6 KiB
Java

/**
*
*
* <h1>Binary Search Tree (Recursive)</h1>
*
* An implementation of BST recursively. In recursive implementation the checks are down the tree
* First root is checked if not found then its childs are checked Binary Search Tree is a binary
* tree which satisfies three properties: left child is less than root node, right child is grater
* than root node, both left and right childs must themselves be a BST.
*
* <p>I have made public functions as methods and to actually implement recursive approach I have
* used private methods
*
* @author [Lakhan Nad](https://github.com/Lakhan-Nad)
*/
public class BSTRecursive {
/** only data member is root of BST */
private Node root;
/** Constructor use to initialize node as null */
BSTRecursive() {
root = null;
}
/**
* Recursive method to delete a data if present in BST.
*
* @param root the current node to search for data
* @param data the value to be deleted
* @return Node the updated value of root parameter after delete operation
*/
private Node delete(Node root, int data) {
if (root == null) {
System.out.println("No such data present in BST.");
} else if (root.data > data) {
root.left = delete(root.left, data);
} else if (root.data < data) {
root.right = delete(root.right, data);
} else {
if (root.right == null && root.left == null) { // If it is leaf node
root = null;
} else if (root.left == null) { // If only right node is present
Node temp = root.right;
root.right = null;
root = temp;
} else if (root.right == null) { // Only left node is present
Node temp = root.left;
root.left = null;
root = temp;
} else { // both child are present
Node temp = root.right;
// Find leftmost child of right subtree
while (temp.left != null) {
temp = temp.left;
}
root.data = temp.data;
root.right = delete(root.right, temp.data);
}
}
return root;
}
/**
* Recursive insertion of value in BST.
*
* @param root to check if the data can be inserted in current node or its subtree
* @param data the value to be inserted
* @return the modified value of the root parameter after insertion
*/
private Node insert(Node root, int data) {
if (root == null) {
root = new Node(data);
} else if (root.data > data) {
root.left = insert(root.left, data);
} else if (root.data < data) {
root.right = insert(root.right, data);
}
return root;
}
/**
* Recursively print Preorder traversal of the BST
*
* @param root
*/
private void preOrder(Node root) {
if (root == null) {
return;
}
System.out.print(root.data + " ");
if (root.left != null) {
preOrder(root.left);
}
if (root.right != null) {
preOrder(root.right);
}
}
/**
* Recursively print Postorder travesal of BST.
*
* @param root
*/
private void postOrder(Node root) {
if (root == null) {
return;
}
if (root.left != null) {
postOrder(root.left);
}
if (root.right != null) {
postOrder(root.right);
}
System.out.print(root.data + " ");
}
/**
* Recursively print Inorder traversal of BST.
*
* @param root
*/
private void inOrder(Node root) {
if (root == null) {
return;
}
if (root.left != null) {
inOrder(root.left);
}
System.out.print(root.data + " ");
if (root.right != null) {
inOrder(root.right);
}
}
/**
* Serach recursively if the given value is present in BST or not.
*
* @param root the current node to check
* @param data the value to be checked
* @return boolean if data is present or not
*/
private boolean search(Node root, int data) {
if (root == null) {
return false;
} else if (root.data == data) {
return true;
} else if (root.data > data) {
return search(root.left, data);
} else {
return search(root.right, data);
}
}
/**
* add in BST. if the value is not already present it is inserted or else no change takes place.
*
* @param data the value to be inserted
*/
public void add(int data) {
this.root = insert(this.root, data);
}
/**
* If data is present in BST delete it else do nothing.
*
* @param data the value to be removed
*/
public void remove(int data) {
this.root = delete(this.root, data);
}
/** To call inorder traversal on tree */
public void inorder() {
System.out.println("Inorder traversal of this tree is:");
inOrder(this.root);
System.out.println(); // for next line
}
/** To call postorder traversal on tree */
public void postorder() {
System.out.println("Postorder traversal of this tree is:");
postOrder(this.root);
System.out.println(); // for next li
}
/** To call preorder traversal on tree. */
public void preorder() {
System.out.println("Preorder traversal of this tree is:");
preOrder(this.root);
System.out.println(); // for next li
}
/**
* To check if given value is present in tree or not.
*
* @param data
*/
public void find(int data) {
if (search(this.root, data)) {
System.out.println(data + " is present in given BST.");
return true;
}
System.out.println(data + " not found.");
return false;
}
/** The Node class used for building binary search tree */
private class Node {
int data;
Node left;
Node right;
/** Constructor with data as parameter */
Node(int d) {
data = d;
left = null;
right = null;
}
}
}