mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-27 14:34:05 +08:00
127 lines
4.7 KiB
Java
127 lines
4.7 KiB
Java
package com.thealgorithms.searches;
|
|
|
|
import static org.junit.jupiter.api.Assertions.assertEquals;
|
|
import static org.junit.jupiter.api.Assertions.assertFalse;
|
|
import static org.junit.jupiter.api.Assertions.assertNotNull;
|
|
import static org.junit.jupiter.api.Assertions.assertTrue;
|
|
|
|
import org.junit.jupiter.api.Test;
|
|
|
|
class MonteCarloTreeSearchTest {
|
|
|
|
/**
|
|
* Test the creation of a node and its initial state.
|
|
*/
|
|
@Test
|
|
void testNodeCreation() {
|
|
MonteCarloTreeSearch.Node node = new MonteCarloTreeSearch().new Node(null, true);
|
|
assertNotNull(node, "Node should be created");
|
|
assertTrue(node.childNodes.isEmpty(), "Child nodes should be empty upon creation");
|
|
assertTrue(node.isPlayersTurn, "Initial turn should be player's turn");
|
|
assertEquals(0, node.score, "Initial score should be zero");
|
|
assertEquals(0, node.visitCount, "Initial visit count should be zero");
|
|
}
|
|
|
|
/**
|
|
* Test adding child nodes to a parent node.
|
|
*/
|
|
@Test
|
|
void testAddChildNodes() {
|
|
MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();
|
|
MonteCarloTreeSearch.Node parentNode = mcts.new Node(null, true);
|
|
|
|
mcts.addChildNodes(parentNode, 5);
|
|
|
|
assertEquals(5, parentNode.childNodes.size(), "Parent should have 5 child nodes");
|
|
for (MonteCarloTreeSearch.Node child : parentNode.childNodes) {
|
|
assertFalse(child.isPlayersTurn, "Child node should not be player's turn");
|
|
assertEquals(0, child.visitCount, "Child node visit count should be zero");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test the UCT selection of a promising node.
|
|
*/
|
|
@Test
|
|
void testGetPromisingNode() {
|
|
MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();
|
|
MonteCarloTreeSearch.Node parentNode = mcts.new Node(null, true);
|
|
|
|
// Create child nodes with different visit counts and scores
|
|
for (int i = 0; i < 3; i++) {
|
|
MonteCarloTreeSearch.Node child = mcts.new Node(parentNode, false);
|
|
child.visitCount = i + 1;
|
|
child.score = i * 2;
|
|
parentNode.childNodes.add(child);
|
|
}
|
|
|
|
// Get promising node
|
|
MonteCarloTreeSearch.Node promisingNode = mcts.getPromisingNode(parentNode);
|
|
|
|
// The child with the highest UCT value should be chosen.
|
|
assertNotNull(promisingNode, "Promising node should not be null");
|
|
assertEquals(0, parentNode.childNodes.indexOf(promisingNode), "The first child should be the most promising");
|
|
}
|
|
|
|
/**
|
|
* Test simulation of random play and backpropagation.
|
|
*/
|
|
@Test
|
|
void testSimulateRandomPlay() {
|
|
MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();
|
|
MonteCarloTreeSearch.Node node = mcts.new Node(null, true);
|
|
node.visitCount = 10; // Simulating existing visits
|
|
|
|
// Simulate random play
|
|
mcts.simulateRandomPlay(node);
|
|
|
|
// Check visit count after simulation
|
|
assertEquals(11, node.visitCount, "Visit count should increase after simulation");
|
|
|
|
// Check if score is updated correctly
|
|
assertTrue(node.score >= 0 && node.score <= MonteCarloTreeSearch.WIN_SCORE, "Score should be between 0 and WIN_SCORE");
|
|
}
|
|
|
|
/**
|
|
* Test retrieving the winning node based on scores.
|
|
*/
|
|
@Test
|
|
void testGetWinnerNode() {
|
|
MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();
|
|
MonteCarloTreeSearch.Node parentNode = mcts.new Node(null, true);
|
|
|
|
// Create child nodes with varying scores
|
|
MonteCarloTreeSearch.Node winningNode = mcts.new Node(parentNode, false);
|
|
winningNode.score = 10; // Highest score
|
|
parentNode.childNodes.add(winningNode);
|
|
|
|
MonteCarloTreeSearch.Node losingNode = mcts.new Node(parentNode, false);
|
|
losingNode.score = 5;
|
|
parentNode.childNodes.add(losingNode);
|
|
|
|
MonteCarloTreeSearch.Node anotherLosingNode = mcts.new Node(parentNode, false);
|
|
anotherLosingNode.score = 3;
|
|
parentNode.childNodes.add(anotherLosingNode);
|
|
|
|
// Get the winning node
|
|
MonteCarloTreeSearch.Node winnerNode = mcts.getWinnerNode(parentNode);
|
|
|
|
assertEquals(winningNode, winnerNode, "Winning node should have the highest score");
|
|
}
|
|
|
|
/**
|
|
* Test the full Monte Carlo Tree Search process.
|
|
*/
|
|
@Test
|
|
void testMonteCarloTreeSearch() {
|
|
MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();
|
|
MonteCarloTreeSearch.Node rootNode = mcts.new Node(null, true);
|
|
|
|
// Execute MCTS and check the resulting node
|
|
MonteCarloTreeSearch.Node optimalNode = mcts.monteCarloTreeSearch(rootNode);
|
|
|
|
assertNotNull(optimalNode, "MCTS should return a non-null optimal node");
|
|
assertTrue(rootNode.childNodes.contains(optimalNode), "Optimal node should be a child of the root");
|
|
}
|
|
}
|