mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
* refactor: Enhance docs, code, add tests in `MaximumSumOfDistinctSubarraysWithLengthK` * Fix * Fix spotbug * Fix * Fix * Fix * Fix
90 lines
3.2 KiB
Java
90 lines
3.2 KiB
Java
package com.thealgorithms.others;
|
|
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
|
|
/**
|
|
* Algorithm to find the maximum sum of a subarray of size K with all distinct
|
|
* elements.
|
|
*
|
|
* This implementation uses a sliding window approach with a hash map to
|
|
* efficiently
|
|
* track element frequencies within the current window. The algorithm maintains
|
|
* a window
|
|
* of size K and slides it across the array, ensuring all elements in the window
|
|
* are distinct.
|
|
*
|
|
* Time Complexity: O(n) where n is the length of the input array
|
|
* Space Complexity: O(k) for storing elements in the hash map
|
|
*
|
|
* @see <a href="https://en.wikipedia.org/wiki/Streaming_algorithm">Streaming
|
|
* Algorithm</a>
|
|
* @see <a href="https://en.wikipedia.org/wiki/Sliding_window_protocol">Sliding
|
|
* Window</a>
|
|
* @author Swarga-codes (https://github.com/Swarga-codes)
|
|
*/
|
|
public final class MaximumSumOfDistinctSubarraysWithLengthK {
|
|
private MaximumSumOfDistinctSubarraysWithLengthK() {
|
|
}
|
|
|
|
/**
|
|
* Finds the maximum sum of a subarray of size K consisting of distinct
|
|
* elements.
|
|
*
|
|
* The algorithm uses a sliding window technique with a frequency map to track
|
|
* the count of each element in the current window. A window is valid only if
|
|
* all K elements are distinct (frequency map size equals K).
|
|
*
|
|
* @param k The size of the subarray. Must be non-negative.
|
|
* @param nums The array from which subarrays will be considered.
|
|
* @return The maximum sum of any distinct-element subarray of size K.
|
|
* Returns 0 if no such subarray exists or if k is 0 or negative.
|
|
* @throws IllegalArgumentException if k is negative
|
|
*/
|
|
public static long maximumSubarraySum(int k, int... nums) {
|
|
if (k <= 0 || nums == null || nums.length < k) {
|
|
return 0;
|
|
}
|
|
|
|
long maxSum = 0;
|
|
long currentSum = 0;
|
|
Map<Integer, Integer> frequencyMap = new HashMap<>();
|
|
|
|
// Initialize the first window of size k
|
|
for (int i = 0; i < k; i++) {
|
|
currentSum += nums[i];
|
|
frequencyMap.put(nums[i], frequencyMap.getOrDefault(nums[i], 0) + 1);
|
|
}
|
|
|
|
// Check if the first window has all distinct elements
|
|
if (frequencyMap.size() == k) {
|
|
maxSum = currentSum;
|
|
}
|
|
|
|
// Slide the window across the array
|
|
for (int i = k; i < nums.length; i++) {
|
|
// Remove the leftmost element from the window
|
|
int leftElement = nums[i - k];
|
|
currentSum -= leftElement;
|
|
int leftFrequency = frequencyMap.get(leftElement);
|
|
if (leftFrequency == 1) {
|
|
frequencyMap.remove(leftElement);
|
|
} else {
|
|
frequencyMap.put(leftElement, leftFrequency - 1);
|
|
}
|
|
|
|
// Add the new rightmost element to the window
|
|
int rightElement = nums[i];
|
|
currentSum += rightElement;
|
|
frequencyMap.put(rightElement, frequencyMap.getOrDefault(rightElement, 0) + 1);
|
|
|
|
// If all elements in the window are distinct, update maxSum if needed
|
|
if (frequencyMap.size() == k && currentSum > maxSum) {
|
|
maxSum = currentSum;
|
|
}
|
|
}
|
|
|
|
return maxSum;
|
|
}
|
|
}
|