mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
62 lines
2.3 KiB
Java
62 lines
2.3 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.List;
|
|
|
|
/**
|
|
* This class provides a solution to the "All Construct" problem.
|
|
*
|
|
* The problem is to determine all the ways a target string can be constructed
|
|
* from a given list of substrings. Each substring in the word bank can be used
|
|
* multiple times, and the order of substrings matters.
|
|
*
|
|
* @author Hardvan
|
|
*/
|
|
public final class AllConstruct {
|
|
private AllConstruct() {
|
|
}
|
|
|
|
/**
|
|
* Finds all possible ways to construct the target string using substrings
|
|
* from the given word bank.
|
|
* Time Complexity: O(n * m * k), where n = length of the target,
|
|
* m = number of words in wordBank, and k = average length of a word.
|
|
*
|
|
* Space Complexity: O(n * m) due to the size of the table storing combinations.
|
|
*
|
|
* @param target The target string to construct.
|
|
* @param wordBank An iterable collection of substrings that can be used to construct the target.
|
|
* @return A list of lists, where each inner list represents one possible
|
|
* way of constructing the target string using the given word bank.
|
|
*/
|
|
public static List<List<String>> allConstruct(String target, Iterable<String> wordBank) {
|
|
List<List<List<String>>> table = new ArrayList<>(target.length() + 1);
|
|
|
|
for (int i = 0; i <= target.length(); i++) {
|
|
table.add(new ArrayList<>());
|
|
}
|
|
|
|
table.get(0).add(new ArrayList<>());
|
|
|
|
for (int i = 0; i <= target.length(); i++) {
|
|
if (!table.get(i).isEmpty()) {
|
|
for (String word : wordBank) {
|
|
if (i + word.length() <= target.length() && target.substring(i, i + word.length()).equals(word)) {
|
|
|
|
List<List<String>> newCombinations = new ArrayList<>();
|
|
for (List<String> combination : table.get(i)) {
|
|
List<String> newCombination = new ArrayList<>(combination);
|
|
newCombination.add(word);
|
|
newCombinations.add(newCombination);
|
|
}
|
|
|
|
table.get(i + word.length()).addAll(newCombinations);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return table.get(target.length());
|
|
}
|
|
}
|