mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
* feat: add damerau-levenshtein distance algorithm * refactor: remove useless parentheses * refactor: add class link to test
186 lines
6.7 KiB
Java
186 lines
6.7 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
||
|
||
import java.util.HashMap;
|
||
import java.util.Map;
|
||
|
||
/**
|
||
* Implementation of the full Damerau–Levenshtein distance algorithm.
|
||
*
|
||
* This algorithm calculates the minimum number of operations required
|
||
* to transform one string into another. Supported operations are:
|
||
* insertion, deletion, substitution, and transposition of adjacent characters.
|
||
*
|
||
* Unlike the restricted version (OSA), this implementation allows multiple
|
||
* edits on the same substring, computing the true edit distance.
|
||
*
|
||
* Time Complexity: O(n * m * max(n, m))
|
||
* Space Complexity: O(n * m)
|
||
*/
|
||
public final class DamerauLevenshteinDistance {
|
||
|
||
private DamerauLevenshteinDistance() {
|
||
// Utility class
|
||
}
|
||
|
||
/**
|
||
* Computes the full Damerau–Levenshtein distance between two strings.
|
||
*
|
||
* @param s1 the first string
|
||
* @param s2 the second string
|
||
* @return the minimum edit distance between the two strings
|
||
* @throws IllegalArgumentException if either input string is null
|
||
*/
|
||
public static int distance(String s1, String s2) {
|
||
validateInputs(s1, s2);
|
||
|
||
int n = s1.length();
|
||
int m = s2.length();
|
||
|
||
Map<Character, Integer> charLastPosition = buildCharacterMap(s1, s2);
|
||
int[][] dp = initializeTable(n, m);
|
||
|
||
fillTable(s1, s2, dp, charLastPosition);
|
||
|
||
return dp[n + 1][m + 1];
|
||
}
|
||
|
||
/**
|
||
* Validates that both input strings are not null.
|
||
*
|
||
* @param s1 the first string to validate
|
||
* @param s2 the second string to validate
|
||
* @throws IllegalArgumentException if either string is null
|
||
*/
|
||
private static void validateInputs(String s1, String s2) {
|
||
if (s1 == null || s2 == null) {
|
||
throw new IllegalArgumentException("Input strings must not be null.");
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Builds a character map containing all unique characters from both strings.
|
||
* Each character is initialized with a position value of 0.
|
||
*
|
||
* This map is used to track the last occurrence position of each character
|
||
* during the distance computation, which is essential for handling transpositions.
|
||
*
|
||
* @param s1 the first string
|
||
* @param s2 the second string
|
||
* @return a map containing all unique characters from both strings, initialized to 0
|
||
*/
|
||
private static Map<Character, Integer> buildCharacterMap(String s1, String s2) {
|
||
Map<Character, Integer> charMap = new HashMap<>();
|
||
for (char c : s1.toCharArray()) {
|
||
charMap.putIfAbsent(c, 0);
|
||
}
|
||
for (char c : s2.toCharArray()) {
|
||
charMap.putIfAbsent(c, 0);
|
||
}
|
||
return charMap;
|
||
}
|
||
|
||
/**
|
||
* Initializes the dynamic programming table for the algorithm.
|
||
*
|
||
* The table has dimensions (n+2) x (m+2) where n and m are the lengths
|
||
* of the input strings. The extra rows and columns are used to handle
|
||
* the transposition operation correctly.
|
||
*
|
||
* The first row and column are initialized with the maximum possible distance,
|
||
* while the second row and column represent the base case of transforming
|
||
* from an empty string.
|
||
*
|
||
* @param n the length of the first string
|
||
* @param m the length of the second string
|
||
* @return an initialized DP table ready for computation
|
||
*/
|
||
private static int[][] initializeTable(int n, int m) {
|
||
int maxDist = n + m;
|
||
int[][] dp = new int[n + 2][m + 2];
|
||
|
||
dp[0][0] = maxDist;
|
||
|
||
for (int i = 0; i <= n; i++) {
|
||
dp[i + 1][0] = maxDist;
|
||
dp[i + 1][1] = i;
|
||
}
|
||
|
||
for (int j = 0; j <= m; j++) {
|
||
dp[0][j + 1] = maxDist;
|
||
dp[1][j + 1] = j;
|
||
}
|
||
|
||
return dp;
|
||
}
|
||
|
||
/**
|
||
* Fills the dynamic programming table by computing the minimum edit distance
|
||
* for each substring pair.
|
||
*
|
||
* This method implements the core algorithm logic, iterating through both strings
|
||
* and computing the minimum cost of transforming substrings. It considers all
|
||
* four operations: insertion, deletion, substitution, and transposition.
|
||
*
|
||
* The character position map is updated as we progress through the first string
|
||
* to enable efficient transposition cost calculation.
|
||
*
|
||
* @param s1 the first string
|
||
* @param s2 the second string
|
||
* @param dp the dynamic programming table to fill
|
||
* @param charLastPosition map tracking the last position of each character in s1
|
||
*/
|
||
private static void fillTable(String s1, String s2, int[][] dp, Map<Character, Integer> charLastPosition) {
|
||
int n = s1.length();
|
||
int m = s2.length();
|
||
|
||
for (int i = 1; i <= n; i++) {
|
||
int lastMatchCol = 0;
|
||
|
||
for (int j = 1; j <= m; j++) {
|
||
char char1 = s1.charAt(i - 1);
|
||
char char2 = s2.charAt(j - 1);
|
||
|
||
int lastMatchRow = charLastPosition.get(char2);
|
||
int cost = (char1 == char2) ? 0 : 1;
|
||
|
||
if (char1 == char2) {
|
||
lastMatchCol = j;
|
||
}
|
||
|
||
dp[i + 1][j + 1] = computeMinimumCost(dp, i, j, lastMatchRow, lastMatchCol, cost);
|
||
}
|
||
|
||
charLastPosition.put(s1.charAt(i - 1), i);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Computes the minimum cost among all possible operations at the current position.
|
||
*
|
||
* This method evaluates four possible operations:
|
||
* 1. Substitution: replace character at position i with character at position j
|
||
* 2. Insertion: insert character from s2 at position j
|
||
* 3. Deletion: delete character from s1 at position i
|
||
* 4. Transposition: swap characters that have been seen before
|
||
*
|
||
* The transposition cost accounts for the gap between the current position
|
||
* and the last position where matching characters were found.
|
||
*
|
||
* @param dp the dynamic programming table
|
||
* @param i the current position in the first string (1-indexed in the DP table)
|
||
* @param j the current position in the second string (1-indexed in the DP table)
|
||
* @param lastMatchRow the row index where the current character of s2 last appeared in s1
|
||
* @param lastMatchCol the column index where the current character of s1 last matched in s2
|
||
* @param cost the substitution cost (0 if characters match, 1 otherwise)
|
||
* @return the minimum cost among all operations
|
||
*/
|
||
private static int computeMinimumCost(int[][] dp, int i, int j, int lastMatchRow, int lastMatchCol, int cost) {
|
||
int substitution = dp[i][j] + cost;
|
||
int insertion = dp[i + 1][j] + 1;
|
||
int deletion = dp[i][j + 1] + 1;
|
||
int transposition = dp[lastMatchRow][lastMatchCol] + i - lastMatchRow - 1 + 1 + j - lastMatchCol - 1;
|
||
|
||
return Math.min(Math.min(substitution, insertion), Math.min(deletion, transposition));
|
||
}
|
||
}
|