mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
* feat(graph): add Push–Relabel max flow with tests and index * style(checkstyle): reduce discharge parameter count via State holder * chore(pmd): make discharge void and remove empty else; satisfy PMD --------- Co-authored-by: a <alexanderklmn@gmail.com>
163 lines
5.6 KiB
Java
163 lines
5.6 KiB
Java
package com.thealgorithms.graph;
|
||
|
||
import java.util.ArrayDeque;
|
||
import java.util.Arrays;
|
||
import java.util.Queue;
|
||
|
||
/**
|
||
* Push–Relabel (Relabel-to-Front variant simplified to array scanning) for maximum flow.
|
||
*
|
||
* <p>Input graph is a capacity matrix where {@code capacity[u][v]} is the capacity of the edge
|
||
* {@code u -> v}. Capacities must be non-negative. Vertices are indexed in {@code [0, n)}.
|
||
*
|
||
* <p>Time complexity: O(V^3) in the worst case for the array-based variant; typically fast in
|
||
* practice. This implementation uses a residual network over an adjacency-matrix representation.
|
||
*
|
||
* <p>The API mirrors {@link EdmondsKarp#maxFlow(int[][], int, int)} and {@link Dinic#maxFlow(int[][], int, int)}.
|
||
*
|
||
* @see <a href="https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm">Wikipedia: Push–Relabel maximum flow algorithm</a>
|
||
*/
|
||
public final class PushRelabel {
|
||
|
||
private PushRelabel() {
|
||
}
|
||
|
||
/**
|
||
* Computes the maximum flow from {@code source} to {@code sink} using Push–Relabel.
|
||
*
|
||
* @param capacity square capacity matrix (n x n); entries must be >= 0
|
||
* @param source source vertex index in [0, n)
|
||
* @param sink sink vertex index in [0, n)
|
||
* @return the maximum flow value
|
||
* @throws IllegalArgumentException if inputs are invalid
|
||
*/
|
||
public static int maxFlow(int[][] capacity, int source, int sink) {
|
||
validate(capacity, source, sink);
|
||
final int n = capacity.length;
|
||
if (source == sink) {
|
||
return 0;
|
||
}
|
||
|
||
int[][] residual = new int[n][n];
|
||
for (int i = 0; i < n; i++) {
|
||
residual[i] = Arrays.copyOf(capacity[i], n);
|
||
}
|
||
|
||
int[] height = new int[n];
|
||
int[] excess = new int[n];
|
||
int[] nextNeighbor = new int[n];
|
||
|
||
// Preflow initialization
|
||
height[source] = n;
|
||
for (int v = 0; v < n; v++) {
|
||
int cap = residual[source][v];
|
||
if (cap > 0) {
|
||
residual[source][v] -= cap;
|
||
residual[v][source] += cap;
|
||
excess[v] += cap;
|
||
excess[source] -= cap;
|
||
}
|
||
}
|
||
|
||
// Active queue contains vertices (except source/sink) with positive excess
|
||
Queue<Integer> active = new ArrayDeque<>();
|
||
for (int v = 0; v < n; v++) {
|
||
if (v != source && v != sink && excess[v] > 0) {
|
||
active.add(v);
|
||
}
|
||
}
|
||
|
||
State state = new State(residual, height, excess, nextNeighbor, source, sink, active);
|
||
|
||
while (!active.isEmpty()) {
|
||
int u = active.poll();
|
||
discharge(u, state);
|
||
if (excess[u] > 0) {
|
||
// still active after discharge; push to back
|
||
active.add(u);
|
||
}
|
||
}
|
||
|
||
// Total flow equals excess at sink
|
||
return excess[sink];
|
||
}
|
||
|
||
private static void discharge(int u, State s) {
|
||
final int n = s.residual.length;
|
||
while (s.excess[u] > 0) {
|
||
if (s.nextNeighbor[u] >= n) {
|
||
relabel(u, s.residual, s.height);
|
||
s.nextNeighbor[u] = 0;
|
||
continue;
|
||
}
|
||
int v = s.nextNeighbor[u];
|
||
if (s.residual[u][v] > 0 && s.height[u] == s.height[v] + 1) {
|
||
int delta = Math.min(s.excess[u], s.residual[u][v]);
|
||
s.residual[u][v] -= delta;
|
||
s.residual[v][u] += delta;
|
||
s.excess[u] -= delta;
|
||
int prevExcessV = s.excess[v];
|
||
s.excess[v] += delta;
|
||
if (v != s.source && v != s.sink && prevExcessV == 0) {
|
||
s.active.add(v);
|
||
}
|
||
} else {
|
||
s.nextNeighbor[u]++;
|
||
}
|
||
}
|
||
}
|
||
|
||
private static final class State {
|
||
final int[][] residual;
|
||
final int[] height;
|
||
final int[] excess;
|
||
final int[] nextNeighbor;
|
||
final int source;
|
||
final int sink;
|
||
final Queue<Integer> active;
|
||
|
||
State(int[][] residual, int[] height, int[] excess, int[] nextNeighbor, int source, int sink, Queue<Integer> active) {
|
||
this.residual = residual;
|
||
this.height = height;
|
||
this.excess = excess;
|
||
this.nextNeighbor = nextNeighbor;
|
||
this.source = source;
|
||
this.sink = sink;
|
||
this.active = active;
|
||
}
|
||
}
|
||
|
||
private static void relabel(int u, int[][] residual, int[] height) {
|
||
final int n = residual.length;
|
||
int minHeight = Integer.MAX_VALUE;
|
||
for (int v = 0; v < n; v++) {
|
||
if (residual[u][v] > 0) {
|
||
minHeight = Math.min(minHeight, height[v]);
|
||
}
|
||
}
|
||
if (minHeight < Integer.MAX_VALUE) {
|
||
height[u] = minHeight + 1;
|
||
}
|
||
}
|
||
|
||
private static void validate(int[][] capacity, int source, int sink) {
|
||
if (capacity == null || capacity.length == 0) {
|
||
throw new IllegalArgumentException("Capacity matrix must not be null or empty");
|
||
}
|
||
int n = capacity.length;
|
||
for (int i = 0; i < n; i++) {
|
||
if (capacity[i] == null || capacity[i].length != n) {
|
||
throw new IllegalArgumentException("Capacity matrix must be square");
|
||
}
|
||
for (int j = 0; j < n; j++) {
|
||
if (capacity[i][j] < 0) {
|
||
throw new IllegalArgumentException("Capacities must be non-negative");
|
||
}
|
||
}
|
||
}
|
||
if (source < 0 || sink < 0 || source >= n || sink >= n) {
|
||
throw new IllegalArgumentException("Source and sink must be valid vertex indices");
|
||
}
|
||
}
|
||
}
|