mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
* feat: add solovay strassen primality test * chore: add wikipedia link * fix: format and coverage * fix: mvn stylecheck * fix: PMD errors * refactor: make random final --------- Co-authored-by: Alex Klymenko <alexanderklmn@gmail.com>
134 lines
5.1 KiB
Java
134 lines
5.1 KiB
Java
package com.thealgorithms.maths;
|
|
|
|
import java.util.Random;
|
|
|
|
/**
|
|
* This class implements the Solovay-Strassen primality test,
|
|
* which is a probabilistic algorithm to determine whether a number is prime.
|
|
* The algorithm is based on properties of the Jacobi symbol and modular exponentiation.
|
|
*
|
|
* For more information, go to {@link https://en.wikipedia.org/wiki/Solovay%E2%80%93Strassen_primality_test}
|
|
*/
|
|
final class SolovayStrassenPrimalityTest {
|
|
|
|
private final Random random;
|
|
|
|
/**
|
|
* Constructs a SolovayStrassenPrimalityTest instance with a specified seed for randomness.
|
|
*
|
|
* @param seed the seed for generating random numbers
|
|
*/
|
|
private SolovayStrassenPrimalityTest(int seed) {
|
|
random = new Random(seed);
|
|
}
|
|
|
|
/**
|
|
* Factory method to create an instance of SolovayStrassenPrimalityTest.
|
|
*
|
|
* @param seed the seed for generating random numbers
|
|
* @return a new instance of SolovayStrassenPrimalityTest
|
|
*/
|
|
public static SolovayStrassenPrimalityTest getSolovayStrassenPrimalityTest(int seed) {
|
|
return new SolovayStrassenPrimalityTest(seed);
|
|
}
|
|
|
|
/**
|
|
* Calculates modular exponentiation using the method of exponentiation by squaring.
|
|
*
|
|
* @param base the base number
|
|
* @param exponent the exponent
|
|
* @param mod the modulus
|
|
* @return (base^exponent) mod mod
|
|
*/
|
|
private static long calculateModularExponentiation(long base, long exponent, long mod) {
|
|
long x = 1; // This will hold the result of (base^exponent) % mod
|
|
long y = base; // This holds the current base value being squared
|
|
|
|
while (exponent > 0) {
|
|
// If exponent is odd, multiply the current base (y) with x
|
|
if (exponent % 2 == 1) {
|
|
x = x * y % mod; // Update result with current base
|
|
}
|
|
// Square the base for the next iteration
|
|
y = y * y % mod; // Update base to be y^2
|
|
exponent = exponent / 2; // Halve the exponent for next iteration
|
|
}
|
|
|
|
return x % mod; // Return final result after all iterations
|
|
}
|
|
|
|
/**
|
|
* Computes the Jacobi symbol (a/n), which is a generalization of the Legendre symbol.
|
|
*
|
|
* @param a the numerator
|
|
* @param num the denominator (must be an odd positive integer)
|
|
* @return the Jacobi symbol value: 1, -1, or 0
|
|
*/
|
|
public int calculateJacobi(long a, long num) {
|
|
// Check if num is non-positive or even; Jacobi symbol is not defined in these cases
|
|
if (num <= 0 || num % 2 == 0) {
|
|
return 0;
|
|
}
|
|
|
|
a = a % num; // Reduce a modulo num to simplify calculations
|
|
int jacobi = 1; // Initialize Jacobi symbol value
|
|
|
|
while (a != 0) {
|
|
// While a is even, reduce it and adjust jacobi based on properties of num
|
|
while (a % 2 == 0) {
|
|
a /= 2; // Divide a by 2 until it becomes odd
|
|
long nMod8 = num % 8; // Get num modulo 8 to check conditions for jacobi adjustment
|
|
if (nMod8 == 3 || nMod8 == 5) {
|
|
jacobi = -jacobi; // Flip jacobi sign based on properties of num modulo 8
|
|
}
|
|
}
|
|
|
|
long temp = a; // Temporarily store value of a
|
|
a = num; // Set a to be num for next iteration
|
|
num = temp; // Set num to be previous value of a
|
|
|
|
// Adjust jacobi based on properties of both numbers when both are odd and congruent to 3 modulo 4
|
|
if (a % 4 == 3 && num % 4 == 3) {
|
|
jacobi = -jacobi; // Flip jacobi sign again based on congruences
|
|
}
|
|
|
|
a = a % num; // Reduce a modulo num for next iteration of Jacobi computation
|
|
}
|
|
|
|
return (num == 1) ? jacobi : 0; // If num reduces to 1, return jacobi value, otherwise return 0 (not defined)
|
|
}
|
|
|
|
/**
|
|
* Performs the Solovay-Strassen primality test on a given number.
|
|
*
|
|
* @param num the number to be tested for primality
|
|
* @param iterations the number of iterations to run for accuracy
|
|
* @return true if num is likely prime, false if it is composite
|
|
*/
|
|
public boolean solovayStrassen(long num, int iterations) {
|
|
if (num <= 1) {
|
|
return false; // Numbers <=1 are not prime by definition.
|
|
}
|
|
if (num <= 3) {
|
|
return true; // Numbers <=3 are prime.
|
|
}
|
|
|
|
for (int i = 0; i < iterations; i++) {
|
|
long r = Math.abs(random.nextLong() % (num - 1)) + 2; // Generate a non-negative random number.
|
|
long a = r % (num - 1) + 1; // Choose random 'a' in range [1, n-1].
|
|
|
|
long jacobi = (num + calculateJacobi(a, num)) % num;
|
|
// Calculate Jacobi symbol and adjust it modulo n.
|
|
|
|
long mod = calculateModularExponentiation(a, (num - 1) / 2, num);
|
|
// Calculate modular exponentiation: a^((n-1)/2) mod n.
|
|
|
|
if (jacobi == 0 || mod != jacobi) {
|
|
return false; // If Jacobi symbol is zero or doesn't match modular result, n is composite.
|
|
}
|
|
}
|
|
|
|
return true; // If no contradictions found after all iterations, n is likely prime.
|
|
}
|
|
}
|