mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
92 lines
3.1 KiB
Java
92 lines
3.1 KiB
Java
package com.thealgorithms.randomized;
|
|
|
|
import static com.thealgorithms.randomized.MonteCarloIntegration.approximate;
|
|
import static org.junit.jupiter.api.Assertions.assertEquals;
|
|
import static org.junit.jupiter.api.Assertions.assertNotNull;
|
|
import static org.junit.jupiter.api.Assertions.assertThrows;
|
|
|
|
import java.util.function.Function;
|
|
import org.junit.jupiter.api.Test;
|
|
|
|
class MonteCarloIntegrationTest {
|
|
|
|
private static final double EPSILON = 0.03; // Allow 3% error margin
|
|
|
|
@Test
|
|
void testConstantFunction() {
|
|
// Integral of f(x) = 2 from 0 to 1 is 2
|
|
Function<Double, Double> constant = x -> 2.0;
|
|
double result = approximate(constant, 0, 1, 10000);
|
|
assertEquals(2.0, result, EPSILON);
|
|
}
|
|
|
|
@Test
|
|
void testLinearFunction() {
|
|
// Integral of f(x) = x from 0 to 1 is 0.5
|
|
Function<Double, Double> linear = Function.identity();
|
|
double result = approximate(linear, 0, 1, 10000);
|
|
assertEquals(0.5, result, EPSILON);
|
|
}
|
|
|
|
@Test
|
|
void testQuadraticFunction() {
|
|
// Integral of f(x) = x^2 from 0 to 1 is 1/3
|
|
Function<Double, Double> quadratic = x -> x * x;
|
|
double result = approximate(quadratic, 0, 1, 10000);
|
|
assertEquals(1.0 / 3.0, result, EPSILON);
|
|
}
|
|
|
|
@Test
|
|
void testLargeSampleSize() {
|
|
// Integral of f(x) = x^2 from 0 to 1 is 1/3
|
|
Function<Double, Double> quadratic = x -> x * x;
|
|
double result = approximate(quadratic, 0, 1, 50000000);
|
|
assertEquals(1.0 / 3.0, result, EPSILON / 2); // Larger sample size, smaller error margin
|
|
}
|
|
|
|
@Test
|
|
void testReproducibility() {
|
|
Function<Double, Double> linear = Function.identity();
|
|
double result1 = approximate(linear, 0, 1, 10000, 42L);
|
|
double result2 = approximate(linear, 0, 1, 10000, 42L);
|
|
assertEquals(result1, result2, 0.0); // Exactly equal
|
|
}
|
|
|
|
@Test
|
|
void testNegativeInterval() {
|
|
// Integral of f(x) = x from -1 to 1 is 0
|
|
Function<Double, Double> linear = Function.identity();
|
|
double result = approximate(linear, -1, 1, 10000);
|
|
assertEquals(0.0, result, EPSILON);
|
|
}
|
|
|
|
@Test
|
|
void testNullFunction() {
|
|
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(null, 0, 1, 1000));
|
|
assertNotNull(exception);
|
|
}
|
|
|
|
@Test
|
|
void testInvalidInterval() {
|
|
Function<Double, Double> linear = Function.identity();
|
|
Exception exception = assertThrows(IllegalArgumentException.class, () -> {
|
|
approximate(linear, 2, 1, 1000); // b <= a
|
|
});
|
|
assertNotNull(exception);
|
|
}
|
|
|
|
@Test
|
|
void testZeroSampleSize() {
|
|
Function<Double, Double> linear = Function.identity();
|
|
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(linear, 0, 1, 0));
|
|
assertNotNull(exception);
|
|
}
|
|
|
|
@Test
|
|
void testNegativeSampleSize() {
|
|
Function<Double, Double> linear = Function.identity();
|
|
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(linear, 0, 1, -100));
|
|
assertNotNull(exception);
|
|
}
|
|
}
|