Files
Java/src/test/java/com/thealgorithms/maths/LinearDiophantineEquationsSolverTest.java
Hardik Pawar 219cc33588 refactor: Enhance docs, code, add tests in `LinearDiophantineEquation… (#6744)
refactor: Enhance docs, code, add tests in `LinearDiophantineEquationsSolver`
2025-10-15 08:42:16 +00:00

331 lines
11 KiB
Java

package com.thealgorithms.maths;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.Test;
/**
* Test class for LinearDiophantineEquationsSolver.
* Tests various cases including:
* - Equations with solutions
* - Equations with no solutions
* - Special cases (zero coefficients, infinite solutions)
* - Edge cases (negative coefficients, large numbers)
*/
class LinearDiophantineEquationsSolverTest {
/**
* Tests the example equation 3x + 4y = 7.
* Expected solution: x = -9, y = 8 (or other valid solutions).
*/
@Test
void testBasicEquation() {
final var equation = new LinearDiophantineEquationsSolver.Equation(3, 4, 7);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
// Verify that the solution satisfies the equation
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation with no solution: 2x + 4y = 5.
* Since gcd(2, 4) = 2 and 2 does not divide 5, no solution exists.
*/
@Test
void testNoSolution() {
final var equation = new LinearDiophantineEquationsSolver.Equation(2, 4, 5);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertEquals(LinearDiophantineEquationsSolver.Solution.NO_SOLUTION, solution);
}
/**
* Tests the trivial equation 0x + 0y = 0.
* This has infinite solutions.
*/
@Test
void testInfiniteSolutions() {
final var equation = new LinearDiophantineEquationsSolver.Equation(0, 0, 0);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertEquals(LinearDiophantineEquationsSolver.Solution.INFINITE_SOLUTIONS, solution);
}
/**
* Tests an equation where a = 0: 0x + 5y = 10.
* Expected solution: x = 0, y = 2.
*/
@Test
void testZeroCoefficient() {
final var equation = new LinearDiophantineEquationsSolver.Equation(0, 5, 10);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation where b = 0: 3x + 0y = 9.
* Expected solution: x = 3, y can be anything (solver will return y = 0).
*/
@Test
void testZeroCoefficientB() {
final var equation = new LinearDiophantineEquationsSolver.Equation(3, 0, 9);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation with negative coefficients: -3x + 4y = 7.
*/
@Test
void testNegativeCoefficients() {
final var equation = new LinearDiophantineEquationsSolver.Equation(-3, 4, 7);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation with negative result: 3x + 4y = -7.
*/
@Test
void testNegativeResult() {
final var equation = new LinearDiophantineEquationsSolver.Equation(3, 4, -7);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation with coprime coefficients: 7x + 11y = 1.
* Since gcd(7, 11) = 1, a solution exists.
*/
@Test
void testCoprimeCoefficients() {
final var equation = new LinearDiophantineEquationsSolver.Equation(7, 11, 1);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation with larger coefficients: 12x + 18y = 30.
* Since gcd(12, 18) = 6 and 6 divides 30, a solution exists.
*/
@Test
void testLargerCoefficients() {
final var equation = new LinearDiophantineEquationsSolver.Equation(12, 18, 30);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation that has no solution due to GCD: 6x + 9y = 5.
* Since gcd(6, 9) = 3 and 3 does not divide 5, no solution exists.
*/
@Test
void testNoSolutionGcdCheck() {
final var equation = new LinearDiophantineEquationsSolver.Equation(6, 9, 5);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertEquals(LinearDiophantineEquationsSolver.Solution.NO_SOLUTION, solution);
}
/**
* Tests the equation x + y = 1.
* Simple case where gcd(1, 1) = 1.
*/
@Test
void testSimpleCase() {
final var equation = new LinearDiophantineEquationsSolver.Equation(1, 1, 1);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests Solution equality.
*/
@Test
void testSolutionEquality() {
final var solution1 = new LinearDiophantineEquationsSolver.Solution(3, 5);
final var solution2 = new LinearDiophantineEquationsSolver.Solution(3, 5);
final var solution3 = new LinearDiophantineEquationsSolver.Solution(3, 6);
assertEquals(solution1, solution2);
assertNotEquals(solution3, solution1);
assertEquals(solution1, solution1);
assertNotEquals(null, solution1);
assertNotEquals("string", solution1);
}
/**
* Tests Solution hashCode.
*/
@Test
void testSolutionHashCode() {
final var solution1 = new LinearDiophantineEquationsSolver.Solution(3, 5);
final var solution2 = new LinearDiophantineEquationsSolver.Solution(3, 5);
assertEquals(solution1.hashCode(), solution2.hashCode());
}
/**
* Tests Solution toString.
*/
@Test
void testSolutionToString() {
final var solution = new LinearDiophantineEquationsSolver.Solution(3, 5);
final var str = solution.toString();
assertTrue(str.contains("3"));
assertTrue(str.contains("5"));
assertTrue(str.contains("Solution"));
}
/**
* Tests GcdSolutionWrapper equality.
*/
@Test
void testGcdSolutionWrapperEquality() {
final var solution = new LinearDiophantineEquationsSolver.Solution(1, 2);
final var wrapper1 = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(5, solution);
final var wrapper2 = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(5, solution);
final var wrapper3 = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(6, solution);
assertEquals(wrapper1, wrapper2);
assertNotEquals(wrapper3, wrapper1);
assertEquals(wrapper1, wrapper1);
assertNotEquals(null, wrapper1);
assertNotEquals("string", wrapper1);
}
/**
* Tests GcdSolutionWrapper hashCode.
*/
@Test
void testGcdSolutionWrapperHashCode() {
final var solution = new LinearDiophantineEquationsSolver.Solution(1, 2);
final var wrapper1 = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(5, solution);
final var wrapper2 = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(5, solution);
assertEquals(wrapper1.hashCode(), wrapper2.hashCode());
}
/**
* Tests GcdSolutionWrapper toString.
*/
@Test
void testGcdSolutionWrapperToString() {
final var solution = new LinearDiophantineEquationsSolver.Solution(1, 2);
final var wrapper = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(5, solution);
final var str = wrapper.toString();
assertTrue(str.contains("5"));
assertTrue(str.contains("GcdSolutionWrapper"));
}
/**
* Tests Equation record functionality.
*/
@Test
void testEquationRecord() {
final var equation = new LinearDiophantineEquationsSolver.Equation(3, 4, 7);
assertEquals(3, equation.a());
assertEquals(4, equation.b());
assertEquals(7, equation.c());
}
/**
* Tests an equation with c = 0: 3x + 4y = 0.
* Expected solution: x = 0, y = 0.
*/
@Test
void testZeroResult() {
final var equation = new LinearDiophantineEquationsSolver.Equation(3, 4, 0);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests Solution setters.
*/
@Test
void testSolutionSetters() {
final var solution = new LinearDiophantineEquationsSolver.Solution(1, 2);
solution.setX(10);
solution.setY(20);
assertEquals(10, solution.getX());
assertEquals(20, solution.getY());
}
/**
* Tests GcdSolutionWrapper setters.
*/
@Test
void testGcdSolutionWrapperSetters() {
final var solution = new LinearDiophantineEquationsSolver.Solution(1, 2);
final var wrapper = new LinearDiophantineEquationsSolver.GcdSolutionWrapper(5, solution);
final var newSolution = new LinearDiophantineEquationsSolver.Solution(3, 4);
wrapper.setGcd(10);
wrapper.setSolution(newSolution);
assertEquals(10, wrapper.getGcd());
assertEquals(newSolution, wrapper.getSolution());
}
/**
* Tests an equation with both coefficients negative: -3x - 4y = -7.
*/
@Test
void testBothCoefficientsNegative() {
final var equation = new LinearDiophantineEquationsSolver.Equation(-3, -4, -7);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
/**
* Tests an equation with large prime coefficients: 97x + 101y = 198.
*/
@Test
void testLargePrimeCoefficients() {
final var equation = new LinearDiophantineEquationsSolver.Equation(97, 101, 198);
final var solution = LinearDiophantineEquationsSolver.findAnySolution(equation);
assertNotNull(solution);
int result = equation.a() * solution.getX() + equation.b() * solution.getY();
assertEquals(equation.c(), result);
}
}