Files
Java/src/main/java/com/thealgorithms/bitmanipulation/CountSetBits.java
GOPISETTI NAVADEEP 93811614b8 feat: add Count Set Bits algorithm (#7072)
* feat: add Count Set Bits algorithm (issue #6931)

* fix: correct CountSetBits algorithm logic

* style: apply clang-format to CountSetBits files

* fix: correct test expectations for CountSetBits

* fix: correct test expectations for CountSetBits
2025-11-16 12:54:43 +01:00

80 lines
2.1 KiB
Java

package com.thealgorithms.bitmanipulation;
/**
* Utility class to count total set bits from 1 to N
* A set bit is a bit in binary representation that is 1
*
* @author navadeep
*/
public final class CountSetBits {
private CountSetBits() {
// Utility class, prevent instantiation
}
/**
* Counts total number of set bits in all numbers from 1 to n
* Time Complexity: O(log n)
*
* @param n the upper limit (inclusive)
* @return total count of set bits from 1 to n
* @throws IllegalArgumentException if n is negative
*/
public static int countSetBits(int n) {
if (n < 0) {
throw new IllegalArgumentException("Input must be non-negative");
}
if (n == 0) {
return 0;
}
// Find the largest power of 2 <= n
int x = largestPowerOf2InNumber(n);
// Total bits at position x: x * 2^(x-1)
int bitsAtPositionX = x * (1 << (x - 1));
// Remaining numbers after 2^x
int remainingNumbers = n - (1 << x) + 1;
// Recursively count for the rest
int rest = countSetBits(n - (1 << x));
return bitsAtPositionX + remainingNumbers + rest;
}
/**
* Finds the position of the most significant bit in n
*
* @param n the number
* @return position of MSB (0-indexed from right)
*/
private static int largestPowerOf2InNumber(int n) {
int position = 0;
while ((1 << position) <= n) {
position++;
}
return position - 1;
}
/**
* Alternative naive approach - counts set bits by iterating through all numbers
* Time Complexity: O(n log n)
*
* @param n the upper limit (inclusive)
* @return total count of set bits from 1 to n
*/
public static int countSetBitsNaive(int n) {
if (n < 0) {
throw new IllegalArgumentException("Input must be non-negative");
}
int count = 0;
for (int i = 1; i <= n; i++) {
count += Integer.bitCount(i);
}
return count;
}
}