mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-23 04:20:16 +08:00
40 lines
1.5 KiB
Java
40 lines
1.5 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
|
|
|
/**
|
|
* A Dynamic Programming solution for the Rod cutting problem.
|
|
* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces.
|
|
*/
|
|
public final class RodCutting {
|
|
private RodCutting() {
|
|
}
|
|
|
|
/**
|
|
* This method calculates the maximum obtainable value for cutting a rod of length n
|
|
* into different pieces, given the prices for each possible piece length.
|
|
*
|
|
* @param price An array representing the prices of different pieces, where price[i-1]
|
|
* represents the price of a piece of length i.
|
|
* @param n The length of the rod to be cut.
|
|
* @return The maximum obtainable value.
|
|
*/
|
|
public static int cutRod(int[] price, int n) {
|
|
// Create an array to store the maximum obtainable values for each rod length.
|
|
int[] val = new int[n + 1];
|
|
val[0] = 0;
|
|
|
|
// Calculate the maximum value for each rod length from 1 to n.
|
|
for (int i = 1; i <= n; i++) {
|
|
int maxVal = Integer.MIN_VALUE;
|
|
// Try all possible ways to cut the rod and find the maximum value.
|
|
for (int j = 1; j <= i; j++) {
|
|
maxVal = Math.max(maxVal, price[j - 1] + val[i - j]);
|
|
}
|
|
// Store the maximum value for the current rod length.
|
|
val[i] = maxVal;
|
|
}
|
|
|
|
// The final element of 'val' contains the maximum obtainable value for a rod of length 'n'.
|
|
return val[n];
|
|
}
|
|
}
|