mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-21 19:14:55 +08:00
84 lines
3.2 KiB
Java
84 lines
3.2 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
|
|
|
/**
|
|
* Provides functionality to solve the Palindrome Partitioning II problem, which involves finding
|
|
* the minimum number of partitions needed to divide a given string into palindromic substrings.
|
|
*
|
|
* <p>
|
|
* The problem is solved using dynamic programming. The approach involves checking all possible
|
|
* substrings and determining whether they are palindromes. The minimum number of cuts required
|
|
* for palindrome partitioning is computed in a bottom-up manner.
|
|
* </p>
|
|
*
|
|
* <p>
|
|
* Example:
|
|
* <ul>
|
|
* <li>Input: "nitik" => Output: 2 (Partitioning: "n | iti | k")</li>
|
|
* <li>Input: "ababbbabbababa" => Output: 3 (Partitioning: "aba | b | bbabb | ababa")</li>
|
|
* </ul>
|
|
* </p>
|
|
*
|
|
* @see <a href="https://leetcode.com/problems/palindrome-partitioning-ii/">Palindrome Partitioning II</a>
|
|
* @see <a href="https://www.geeksforgeeks.org/palindrome-partitioning-dp-17/">Palindrome Partitioning (GeeksforGeeks)</a>
|
|
*/
|
|
public final class PalindromicPartitioning {
|
|
private PalindromicPartitioning() {
|
|
}
|
|
|
|
public static int minimalPartitions(String word) {
|
|
int len = word.length();
|
|
/* We Make two arrays to create a bottom-up solution.
|
|
minCuts[i] = Minimum number of cuts needed for palindrome partitioning of substring
|
|
word[0..i] isPalindrome[i][j] = true if substring str[i..j] is palindrome Base Condition:
|
|
C[i] is 0 if P[0][i]= true
|
|
*/
|
|
int[] minCuts = new int[len];
|
|
boolean[][] isPalindrome = new boolean[len][len];
|
|
|
|
int i;
|
|
int j;
|
|
int subLen; // different looping variables
|
|
|
|
// Every substring of length 1 is a palindrome
|
|
for (i = 0; i < len; i++) {
|
|
isPalindrome[i][i] = true;
|
|
}
|
|
|
|
/* subLen is substring length. Build the solution in bottom up manner by considering all
|
|
* substrings of length starting from 2 to n. */
|
|
for (subLen = 2; subLen <= len; subLen++) {
|
|
// For substring of length subLen, set different possible starting indexes
|
|
for (i = 0; i < len - subLen + 1; i++) {
|
|
j = i + subLen - 1; // Ending index
|
|
// If subLen is 2, then we just need to
|
|
// compare two characters. Else need to
|
|
// check two corner characters and value
|
|
// of P[i+1][j-1]
|
|
if (subLen == 2) {
|
|
isPalindrome[i][j] = (word.charAt(i) == word.charAt(j));
|
|
} else {
|
|
isPalindrome[i][j] = (word.charAt(i) == word.charAt(j)) && isPalindrome[i + 1][j - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
// We find the minimum for each index
|
|
for (i = 0; i < len; i++) {
|
|
if (isPalindrome[0][i]) {
|
|
minCuts[i] = 0;
|
|
} else {
|
|
minCuts[i] = Integer.MAX_VALUE;
|
|
for (j = 0; j < i; j++) {
|
|
if (isPalindrome[j + 1][i] && 1 + minCuts[j] < minCuts[i]) {
|
|
minCuts[i] = 1 + minCuts[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the min cut value for complete
|
|
// string. i.e., str[0..n-1]
|
|
return minCuts[len - 1];
|
|
}
|
|
}
|