Files
Java/src/main/java/com/thealgorithms/dynamicprogramming/MatrixChainRecursiveTopDownMemoisation.java

69 lines
2.6 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
package com.thealgorithms.dynamicprogramming;
/**
* The MatrixChainRecursiveTopDownMemoisation class implements the matrix-chain
* multiplication problem using a top-down recursive approach with memoization.
*
* <p>Given a chain of matrices A1, A2, ..., An, where matrix Ai has dimensions
* pi-1 × pi, this algorithm finds the optimal way to fully parenthesize the
* product A1A2...An in a way that minimizes the total number of scalar
* multiplications required.</p>
*
* <p>This implementation uses a memoization technique to store the results of
* subproblems, which significantly reduces the number of recursive calls and
* improves performance compared to a naive recursive approach.</p>
*/
public final class MatrixChainRecursiveTopDownMemoisation {
private MatrixChainRecursiveTopDownMemoisation() {
}
/**
* Calculates the minimum number of scalar multiplications needed to multiply
* a chain of matrices.
*
* @param p an array of integers representing the dimensions of the matrices.
* The length of the array is n + 1, where n is the number of matrices.
* @return the minimum number of multiplications required to multiply the chain
* of matrices.
*/
static int memoizedMatrixChain(int[] p) {
int n = p.length;
int[][] m = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
m[i][j] = Integer.MAX_VALUE;
}
}
return lookupChain(m, p, 1, n - 1);
}
/**
* A recursive helper method to lookup the minimum number of multiplications
* for multiplying matrices from index i to index j.
*
* @param m the memoization table storing the results of subproblems.
* @param p an array of integers representing the dimensions of the matrices.
* @param i the starting index of the matrix chain.
* @param j the ending index of the matrix chain.
* @return the minimum number of multiplications needed to multiply matrices
* from i to j.
*/
static int lookupChain(int[][] m, int[] p, int i, int j) {
if (i == j) {
m[i][j] = 0;
return m[i][j];
}
if (m[i][j] < Integer.MAX_VALUE) {
return m[i][j];
} else {
for (int k = i; k < j; k++) {
int q = lookupChain(m, p, i, k) + lookupChain(m, p, k + 1, j) + (p[i - 1] * p[k] * p[j]);
if (q < m[i][j]) {
m[i][j] = q;
}
}
}
return m[i][j];
}
}