mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-28 06:55:02 +08:00

* refactor: MaximumSumOfDistinctSubarraysWithLengthK * checkstyle: fix formatting * checkstyle: fix formatting * checkstyle: fix formatting --------- Co-authored-by: alxkm <alx@alx.com>
70 lines
2.7 KiB
Java
70 lines
2.7 KiB
Java
package com.thealgorithms.others;
|
|
|
|
import java.util.HashSet;
|
|
import java.util.Set;
|
|
|
|
/**
|
|
* References: https://en.wikipedia.org/wiki/Streaming_algorithm
|
|
*
|
|
* This model involves computing the maximum sum of subarrays of a fixed size \( K \) from a stream of integers.
|
|
* As the stream progresses, elements from the end of the window are removed, and new elements from the stream are added.
|
|
*
|
|
* @author Swarga-codes (https://github.com/Swarga-codes)
|
|
*/
|
|
public final class MaximumSumOfDistinctSubarraysWithLengthK {
|
|
private MaximumSumOfDistinctSubarraysWithLengthK() {
|
|
}
|
|
|
|
/**
|
|
* Finds the maximum sum of a subarray of size K consisting of distinct elements.
|
|
*
|
|
* @param k The size of the subarray.
|
|
* @param nums The array from which subarrays will be considered.
|
|
*
|
|
* @return The maximum sum of any distinct-element subarray of size K. If no such subarray exists, returns 0.
|
|
*/
|
|
public static long maximumSubarraySum(int k, int... nums) {
|
|
if (nums.length < k) {
|
|
return 0;
|
|
}
|
|
long masSum = 0; // Variable to store the maximum sum of distinct subarrays
|
|
long currentSum = 0; // Variable to store the sum of the current subarray
|
|
Set<Integer> currentSet = new HashSet<>(); // Set to track distinct elements in the current subarray
|
|
|
|
// Initialize the first window
|
|
for (int i = 0; i < k; i++) {
|
|
currentSum += nums[i];
|
|
currentSet.add(nums[i]);
|
|
}
|
|
// If the first window contains distinct elements, update maxSum
|
|
if (currentSet.size() == k) {
|
|
masSum = currentSum;
|
|
}
|
|
// Slide the window across the array
|
|
for (int i = 1; i < nums.length - k + 1; i++) {
|
|
// Update the sum by removing the element that is sliding out and adding the new element
|
|
currentSum = currentSum - nums[i - 1];
|
|
currentSum = currentSum + nums[i + k - 1];
|
|
int j = i;
|
|
boolean flag = false; // flag value which says that the subarray contains distinct elements
|
|
while (j < i + k && currentSet.size() < k) {
|
|
if (nums[i - 1] == nums[j]) {
|
|
flag = true;
|
|
break;
|
|
} else {
|
|
j++;
|
|
}
|
|
}
|
|
if (!flag) {
|
|
currentSet.remove(nums[i - 1]);
|
|
}
|
|
currentSet.add(nums[i + k - 1]);
|
|
// If the current window has distinct elements, compare and possibly update maxSum
|
|
if (currentSet.size() == k && masSum < currentSum) {
|
|
masSum = currentSum;
|
|
}
|
|
}
|
|
return masSum; // the final maximum sum
|
|
}
|
|
}
|