mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
104 lines
3.6 KiB
Java
104 lines
3.6 KiB
Java
package com.thealgorithms.ciphers;
|
|
|
|
public class HillCipher {
|
|
|
|
// Encrypts the message using the key matrix
|
|
public String encrypt(String message, int[][] keyMatrix) {
|
|
message = message.toUpperCase().replaceAll("[^A-Z]", "");
|
|
int matrixSize = keyMatrix.length;
|
|
validateDeterminant(keyMatrix, matrixSize);
|
|
|
|
StringBuilder cipherText = new StringBuilder();
|
|
int[] messageVector = new int[matrixSize];
|
|
int[] cipherVector = new int[matrixSize];
|
|
int index = 0;
|
|
|
|
while (index < message.length()) {
|
|
for (int i = 0; i < matrixSize; i++) {
|
|
if (index < message.length()) {
|
|
messageVector[i] = message.charAt(index++) - 'A';
|
|
} else {
|
|
messageVector[i] = 'X' - 'A'; // Padding with 'X' if needed
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < matrixSize; i++) {
|
|
cipherVector[i] = 0;
|
|
for (int j = 0; j < matrixSize; j++) {
|
|
cipherVector[i] += keyMatrix[i][j] * messageVector[j];
|
|
}
|
|
cipherVector[i] = cipherVector[i] % 26;
|
|
cipherText.append((char) (cipherVector[i] + 'A'));
|
|
}
|
|
}
|
|
|
|
return cipherText.toString();
|
|
}
|
|
|
|
// Decrypts the message using the inverse key matrix
|
|
public String decrypt(String message, int[][] inverseKeyMatrix) {
|
|
message = message.toUpperCase().replaceAll("[^A-Z]", "");
|
|
int matrixSize = inverseKeyMatrix.length;
|
|
validateDeterminant(inverseKeyMatrix, matrixSize);
|
|
|
|
StringBuilder plainText = new StringBuilder();
|
|
int[] messageVector = new int[matrixSize];
|
|
int[] plainVector = new int[matrixSize];
|
|
int index = 0;
|
|
|
|
while (index < message.length()) {
|
|
for (int i = 0; i < matrixSize; i++) {
|
|
if (index < message.length()) {
|
|
messageVector[i] = message.charAt(index++) - 'A';
|
|
} else {
|
|
messageVector[i] = 'X' - 'A'; // Padding with 'X' if needed
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < matrixSize; i++) {
|
|
plainVector[i] = 0;
|
|
for (int j = 0; j < matrixSize; j++) {
|
|
plainVector[i] += inverseKeyMatrix[i][j] * messageVector[j];
|
|
}
|
|
plainVector[i] = plainVector[i] % 26;
|
|
plainText.append((char) (plainVector[i] + 'A'));
|
|
}
|
|
}
|
|
|
|
return plainText.toString();
|
|
}
|
|
|
|
// Validates that the determinant of the key matrix is not zero modulo 26
|
|
private void validateDeterminant(int[][] keyMatrix, int n) {
|
|
int det = determinant(keyMatrix, n) % 26;
|
|
if (det == 0) {
|
|
throw new IllegalArgumentException("Invalid key matrix. Determinant is zero modulo 26.");
|
|
}
|
|
}
|
|
|
|
// Computes the determinant of a matrix recursively
|
|
private int determinant(int[][] matrix, int n) {
|
|
int det = 0;
|
|
if (n == 1) {
|
|
return matrix[0][0];
|
|
}
|
|
int sign = 1;
|
|
int[][] subMatrix = new int[n - 1][n - 1];
|
|
for (int x = 0; x < n; x++) {
|
|
int subI = 0;
|
|
for (int i = 1; i < n; i++) {
|
|
int subJ = 0;
|
|
for (int j = 0; j < n; j++) {
|
|
if (j != x) {
|
|
subMatrix[subI][subJ++] = matrix[i][j];
|
|
}
|
|
}
|
|
subI++;
|
|
}
|
|
det += sign * matrix[0][x] * determinant(subMatrix, n - 1);
|
|
sign = -sign;
|
|
}
|
|
return det;
|
|
}
|
|
}
|