mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
120 lines
4.4 KiB
Java
120 lines
4.4 KiB
Java
package com.thealgorithms.ciphers;
|
|
|
|
import java.math.BigInteger;
|
|
import java.security.SecureRandom;
|
|
|
|
/**
|
|
* RSA is an asymmetric cryptographic algorithm used for secure data encryption and decryption.
|
|
* It relies on a pair of keys: a public key (used for encryption) and a private key
|
|
* (used for decryption). The algorithm is based on the difficulty of factoring large prime numbers.
|
|
*
|
|
* This implementation includes key generation, encryption, and decryption methods that can handle both
|
|
* text-based messages and BigInteger inputs. For more details on RSA:
|
|
* <a href="https://en.wikipedia.org/wiki/RSA_(cryptosystem)">RSA Cryptosystem - Wikipedia</a>.
|
|
*
|
|
* Example Usage:
|
|
* <pre>
|
|
* RSA rsa = new RSA(1024);
|
|
* String encryptedMessage = rsa.encrypt("Hello RSA!");
|
|
* String decryptedMessage = rsa.decrypt(encryptedMessage);
|
|
* System.out.println(decryptedMessage); // Output: Hello RSA!
|
|
* </pre>
|
|
*
|
|
* Note: The key size directly affects the security and performance of the RSA algorithm.
|
|
* Larger keys are more secure but slower to compute.
|
|
*
|
|
* @author Nguyen Duy Tiep
|
|
* @version 23-Oct-17
|
|
*/
|
|
public class RSA {
|
|
|
|
private BigInteger modulus;
|
|
private BigInteger privateKey;
|
|
private BigInteger publicKey;
|
|
|
|
/**
|
|
* Constructor that generates RSA keys with the specified number of bits.
|
|
*
|
|
* @param bits The bit length of the keys to be generated. Common sizes include 512, 1024, 2048, etc.
|
|
*/
|
|
public RSA(int bits) {
|
|
generateKeys(bits);
|
|
}
|
|
|
|
/**
|
|
* Encrypts a text message using the RSA public key.
|
|
*
|
|
* @param message The plaintext message to be encrypted.
|
|
* @throws IllegalArgumentException If the message is empty.
|
|
* @return The encrypted message represented as a String.
|
|
*/
|
|
public synchronized String encrypt(String message) {
|
|
if (message.isEmpty()) {
|
|
throw new IllegalArgumentException("Message is empty");
|
|
}
|
|
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
|
|
}
|
|
|
|
/**
|
|
* Encrypts a BigInteger message using the RSA public key.
|
|
*
|
|
* @param message The plaintext message as a BigInteger.
|
|
* @return The encrypted message as a BigInteger.
|
|
*/
|
|
public synchronized BigInteger encrypt(BigInteger message) {
|
|
return message.modPow(publicKey, modulus);
|
|
}
|
|
|
|
/**
|
|
* Decrypts an encrypted message (as String) using the RSA private key.
|
|
*
|
|
* @param encryptedMessage The encrypted message to be decrypted, represented as a String.
|
|
* @throws IllegalArgumentException If the message is empty.
|
|
* @return The decrypted plaintext message as a String.
|
|
*/
|
|
public synchronized String decrypt(String encryptedMessage) {
|
|
if (encryptedMessage.isEmpty()) {
|
|
throw new IllegalArgumentException("Message is empty");
|
|
}
|
|
return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
|
|
}
|
|
|
|
/**
|
|
* Decrypts an encrypted BigInteger message using the RSA private key.
|
|
*
|
|
* @param encryptedMessage The encrypted message as a BigInteger.
|
|
* @return The decrypted plaintext message as a BigInteger.
|
|
*/
|
|
public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
|
|
return encryptedMessage.modPow(privateKey, modulus);
|
|
}
|
|
|
|
/**
|
|
* Generates a new RSA key pair (public and private keys) with the specified bit length.
|
|
* Steps:
|
|
* 1. Generate two large prime numbers p and q.
|
|
* 2. Compute the modulus n = p * q.
|
|
* 3. Compute Euler's totient function: φ(n) = (p-1) * (q-1).
|
|
* 4. Choose a public key e (starting from 3) that is coprime with φ(n).
|
|
* 5. Compute the private key d as the modular inverse of e mod φ(n).
|
|
* The public key is (e, n) and the private key is (d, n).
|
|
*
|
|
* @param bits The bit length of the keys to be generated.
|
|
*/
|
|
public final synchronized void generateKeys(int bits) {
|
|
SecureRandom random = new SecureRandom();
|
|
BigInteger p = new BigInteger(bits / 2, 100, random);
|
|
BigInteger q = new BigInteger(bits / 2, 100, random);
|
|
modulus = p.multiply(q);
|
|
|
|
BigInteger phi = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
|
|
|
|
publicKey = BigInteger.valueOf(3L);
|
|
while (phi.gcd(publicKey).intValue() > 1) {
|
|
publicKey = publicKey.add(BigInteger.TWO);
|
|
}
|
|
|
|
privateKey = publicKey.modInverse(phi);
|
|
}
|
|
}
|