mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
62 lines
1.8 KiB
Java
62 lines
1.8 KiB
Java
package com.thealgorithms.maths;
|
|
|
|
/**
|
|
* @see <a href="https://en.wikipedia.org/wiki/Combination">Combination</a>
|
|
*/
|
|
public final class Combinations {
|
|
private Combinations() {
|
|
}
|
|
|
|
/**
|
|
* Calculate of factorial
|
|
*
|
|
* @param n the number
|
|
* @return factorial of given number
|
|
*/
|
|
public static long factorial(int n) {
|
|
if (n < 0) {
|
|
throw new IllegalArgumentException("number is negative");
|
|
}
|
|
return n == 0 || n == 1 ? 1 : n * factorial(n - 1);
|
|
}
|
|
|
|
/**
|
|
* Calculate combinations
|
|
*
|
|
* @param n first number
|
|
* @param k second number
|
|
* @return combinations of given {@code n} and {@code k}
|
|
*/
|
|
public static long combinations(int n, int k) {
|
|
return factorial(n) / (factorial(k) * factorial(n - k));
|
|
}
|
|
|
|
/**
|
|
* The above method can exceed limit of long (overflow) when factorial(n) is
|
|
* larger than limits of long variable. Thus even if nCk is within range of
|
|
* long variable above reason can lead to incorrect result. This is an
|
|
* optimized version of computing combinations. Observations: nC(k + 1) = (n
|
|
* - k) * nCk / (k + 1) We know the value of nCk when k = 1 which is nCk = n
|
|
* Using this base value and above formula we can compute the next term
|
|
* nC(k+1)
|
|
*
|
|
* @param n
|
|
* @param k
|
|
* @return nCk
|
|
*/
|
|
public static long combinationsOptimized(int n, int k) {
|
|
if (n < 0 || k < 0) {
|
|
throw new IllegalArgumentException("n or k can't be negative");
|
|
}
|
|
if (n < k) {
|
|
throw new IllegalArgumentException("n can't be smaller than k");
|
|
}
|
|
// nC0 is always 1
|
|
long solution = 1;
|
|
for (int i = 0; i < k; i++) {
|
|
solution = (n - i) * solution / (i + 1);
|
|
}
|
|
return solution;
|
|
}
|
|
}
|