Files
Java/src/main/java/com/thealgorithms/graph/HierholzerEulerianPath.java
Harshendu Swarnakar 6b7d201657 Hierholzer path algorithm (#6822)
* Added HierholzerEulerianPath algorithm

* Added Hierholzer Algorith to find Eulerian Path

* Added Hierholzer Algorith to find Eulerian Path

* Added Hierholzer Algorith to find Eulerian Path

* Added Hierholzer Algorith to find Eulerian Path

* Added Hierholzer Algorith to find Eulerian Path

* Added Hierholzer Algorith to find Eulerian Path

* Added Hierholzer Algorith to find Eulerian Path

---------

Co-authored-by: crashmovies <swarnakarharshendu420@gmail.com>
2025-10-17 23:53:26 +02:00

304 lines
9.0 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
package com.thealgorithms.graph;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Deque;
import java.util.List;
/**
* Implementation of Hierholzer's Algorithm for finding an Eulerian Path or Circuit
* in a directed graph.
*
* <p>
* An <b>Eulerian Circuit</b> is a path that starts and ends at the same vertex
* and visits every edge exactly once.
* </p>
*
* <p>
* An <b>Eulerian Path</b> visits every edge exactly once but may start and end
* at different vertices.
* </p>
*
* <p>
* <b>Algorithm Summary:</b><br>
* 1. Compute indegree and outdegree for all vertices.<br>
* 2. Check if the graph satisfies Eulerian path or circuit conditions.<br>
* 3. Verify that all vertices with non-zero degree are weakly connected (undirected connectivity).<br>
* 4. Use Hierholzers algorithm to build the path by exploring unused edges iteratively.
* </p>
*
* <p>
* <b>Time Complexity:</b> O(E + V).<br>
* <b>Space Complexity:</b> O(V + E).
* </p>
*
* @author <a href="https://en.wikipedia.org/wiki/Eulerian_path#Hierholzer's_algorithm">Wikipedia: Hierholzer algorithm</a>
*/
public class HierholzerEulerianPath {
/**
* Simple directed graph represented by adjacency lists.
*/
public static class Graph {
private final List<List<Integer>> adjacencyList;
/**
* Constructs a graph with a given number of vertices.
*
* @param numNodes number of vertices
*/
public Graph(int numNodes) {
adjacencyList = new ArrayList<>();
for (int i = 0; i < numNodes; i++) {
adjacencyList.add(new ArrayList<>());
}
}
/**
* Adds a directed edge from vertex {@code from} to vertex {@code to}.
*
* @param from source vertex
* @param to destination vertex
*/
public void addEdge(int from, int to) {
adjacencyList.get(from).add(to);
}
/**
* Returns a list of outgoing edges from the given vertex.
*
* @param node vertex index
* @return list of destination vertices
*/
public List<Integer> getEdges(int node) {
return adjacencyList.get(node);
}
/**
* Returns the number of vertices in the graph.
*
* @return number of vertices
*/
public int getNumNodes() {
return adjacencyList.size();
}
}
private final Graph graph;
/**
* Creates a Hierholzer solver for the given graph.
*
* @param graph directed graph
*/
public HierholzerEulerianPath(Graph graph) {
this.graph = graph;
}
/**
* Finds an Eulerian Path or Circuit using Hierholzers Algorithm.
*
* @return list of vertices representing the Eulerian Path/Circuit,
* or an empty list if none exists
*/
public List<Integer> findEulerianPath() {
int n = graph.getNumNodes();
// empty graph -> no path
if (n == 0) {
return new ArrayList<>();
}
int[] inDegree = new int[n];
int[] outDegree = new int[n];
int edgeCount = computeDegrees(inDegree, outDegree);
// no edges -> single vertex response requested by tests: [0]
if (edgeCount == 0) {
return Collections.singletonList(0);
}
int startNode = determineStartNode(inDegree, outDegree);
if (startNode == -1) {
return new ArrayList<>();
}
if (!allNonZeroDegreeVerticesWeaklyConnected(startNode, n, outDegree, inDegree)) {
return new ArrayList<>();
}
List<Integer> path = buildHierholzerPath(startNode, n);
if (path.size() != edgeCount + 1) {
return new ArrayList<>();
}
return rotateEulerianCircuitIfNeeded(path, outDegree, inDegree);
}
private int computeDegrees(int[] inDegree, int[] outDegree) {
int edgeCount = 0;
for (int u = 0; u < graph.getNumNodes(); u++) {
for (int v : graph.getEdges(u)) {
outDegree[u]++;
inDegree[v]++;
edgeCount++;
}
}
return edgeCount;
}
private int determineStartNode(int[] inDegree, int[] outDegree) {
int n = graph.getNumNodes();
int startNode = -1;
int startCount = 0;
int endCount = 0;
for (int i = 0; i < n; i++) {
int diff = outDegree[i] - inDegree[i];
if (diff == 1) {
startNode = i;
startCount++;
} else if (diff == -1) {
endCount++;
} else if (Math.abs(diff) > 1) {
return -1;
}
}
if (!((startCount == 1 && endCount == 1) || (startCount == 0 && endCount == 0))) {
return -1;
}
if (startNode == -1) {
for (int i = 0; i < n; i++) {
if (outDegree[i] > 0) {
startNode = i;
break;
}
}
}
return startNode;
}
private List<Integer> buildHierholzerPath(int startNode, int n) {
List<Deque<Integer>> tempAdj = new ArrayList<>();
for (int i = 0; i < n; i++) {
tempAdj.add(new ArrayDeque<>(graph.getEdges(i)));
}
Deque<Integer> stack = new ArrayDeque<>();
List<Integer> path = new ArrayList<>();
stack.push(startNode);
while (!stack.isEmpty()) {
int u = stack.peek();
if (!tempAdj.get(u).isEmpty()) {
stack.push(tempAdj.get(u).pollFirst());
} else {
path.add(stack.pop());
}
}
Collections.reverse(path);
return path;
}
private List<Integer> rotateEulerianCircuitIfNeeded(List<Integer> path, int[] outDegree, int[] inDegree) {
int startCount = 0;
int endCount = 0;
for (int i = 0; i < outDegree.length; i++) {
int diff = outDegree[i] - inDegree[i];
if (diff == 1) {
startCount++;
} else if (diff == -1) {
endCount++;
}
}
if (startCount == 0 && endCount == 0 && !path.isEmpty()) {
int preferredStart = -1;
for (int i = 0; i < outDegree.length; i++) {
if (outDegree[i] > 0) {
preferredStart = i;
break;
}
}
if (preferredStart != -1 && path.get(0) != preferredStart) {
int idx = 0;
for (Integer node : path) { // replaced indexed loop
if (node == preferredStart) {
break;
}
idx++;
}
if (idx > 0) {
List<Integer> rotated = new ArrayList<>();
int currentIndex = 0;
for (Integer node : path) { // replaced indexed loop
if (currentIndex >= idx) {
rotated.add(node);
}
currentIndex++;
}
currentIndex = 0;
for (Integer node : path) { // replaced indexed loop
if (currentIndex < idx) {
rotated.add(node);
}
currentIndex++;
}
path = rotated;
}
}
}
return path;
}
/**
* Checks weak connectivity (undirected) among vertices that have non-zero degree.
*
* @param startNode node to start DFS from (must be a vertex with non-zero degree)
* @param n number of vertices
* @param outDegree out-degree array
* @param inDegree in-degree array
* @return true if all vertices having non-zero degree belong to a single weak component
*/
private boolean allNonZeroDegreeVerticesWeaklyConnected(int startNode, int n, int[] outDegree, int[] inDegree) {
boolean[] visited = new boolean[n];
Deque<Integer> stack = new ArrayDeque<>();
stack.push(startNode);
visited[startNode] = true;
while (!stack.isEmpty()) {
int u = stack.pop();
for (int v : graph.getEdges(u)) {
if (!visited[v]) {
visited[v] = true;
stack.push(v);
}
}
for (int x = 0; x < n; x++) {
if (!visited[x]) {
for (int y : graph.getEdges(x)) {
if (y == u) {
visited[x] = true;
stack.push(x);
break;
}
}
}
}
}
for (int i = 0; i < n; i++) {
if (outDegree[i] + inDegree[i] > 0 && !visited[i]) {
return false;
}
}
return true;
}
}