mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-20 10:14:50 +08:00
101 lines
3.6 KiB
Java
101 lines
3.6 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
|
|
|
/**
|
|
* A DynamicProgramming based solution for Edit Distance problem In Java
|
|
* Description of Edit Distance with an Example:
|
|
*
|
|
* <p>
|
|
* Edit distance is a way of quantifying how dissimilar two strings (e.g.,
|
|
* words) are to one another, by counting the minimum number of operations
|
|
* required to transform one string into the other. The distance operations are
|
|
* the removal, insertion, or substitution of a character in the string.
|
|
*
|
|
* <p>
|
|
*
|
|
* <p>
|
|
* The Distance between "kitten" and "sitting" is 3. A minimal edit script that
|
|
* transforms the former into the latter is:
|
|
*
|
|
* <p>
|
|
* kitten → sitten (substitution of "s" for "k") sitten → sittin (substitution
|
|
* of "i" for "e") sittin → sitting (insertion of "g" at the end).
|
|
*
|
|
* @author SUBHAM SANGHAI
|
|
*/
|
|
public final class EditDistance {
|
|
private EditDistance() {
|
|
}
|
|
|
|
public static int minDistance(String word1, String word2) {
|
|
int len1 = word1.length();
|
|
int len2 = word2.length();
|
|
// len1+1, len2+1, because finally return dp[len1][len2]
|
|
int[][] dp = new int[len1 + 1][len2 + 1];
|
|
/* If second string is empty, the only option is to
|
|
insert all characters of first string into second*/
|
|
for (int i = 0; i <= len1; i++) {
|
|
dp[i][0] = i;
|
|
}
|
|
/* If first string is empty, the only option is to
|
|
insert all characters of second string into first*/
|
|
for (int j = 0; j <= len2; j++) {
|
|
dp[0][j] = j;
|
|
}
|
|
// iterate though, and check last char
|
|
for (int i = 0; i < len1; i++) {
|
|
char c1 = word1.charAt(i);
|
|
for (int j = 0; j < len2; j++) {
|
|
char c2 = word2.charAt(j);
|
|
// if last two chars equal
|
|
if (c1 == c2) {
|
|
// update dp value for +1 length
|
|
dp[i + 1][j + 1] = dp[i][j];
|
|
} else {
|
|
/* if two characters are different ,
|
|
then take the minimum of the various operations(i.e insertion,removal,substitution)*/
|
|
int replace = dp[i][j] + 1;
|
|
int insert = dp[i][j + 1] + 1;
|
|
int delete = dp[i + 1][j] + 1;
|
|
|
|
int min = Math.min(replace, insert);
|
|
min = Math.min(delete, min);
|
|
dp[i + 1][j + 1] = min;
|
|
}
|
|
}
|
|
}
|
|
/* return the final answer , after traversing through both the strings*/
|
|
return dp[len1][len2];
|
|
}
|
|
|
|
// edit distance problem
|
|
public static int editDistance(String s1, String s2) {
|
|
int[][] storage = new int[s1.length() + 1][s2.length() + 1];
|
|
return editDistance(s1, s2, storage);
|
|
}
|
|
|
|
public static int editDistance(String s1, String s2, int[][] storage) {
|
|
int m = s1.length();
|
|
int n = s2.length();
|
|
if (storage[m][n] > 0) {
|
|
return storage[m][n];
|
|
}
|
|
if (m == 0) {
|
|
storage[m][n] = n;
|
|
return storage[m][n];
|
|
}
|
|
if (n == 0) {
|
|
storage[m][n] = m;
|
|
return storage[m][n];
|
|
}
|
|
if (s1.charAt(0) == s2.charAt(0)) {
|
|
storage[m][n] = editDistance(s1.substring(1), s2.substring(1), storage);
|
|
} else {
|
|
int op1 = editDistance(s1, s2.substring(1), storage);
|
|
int op2 = editDistance(s1.substring(1), s2, storage);
|
|
int op3 = editDistance(s1.substring(1), s2.substring(1), storage);
|
|
storage[m][n] = 1 + Math.min(op1, Math.min(op2, op3));
|
|
}
|
|
return storage[m][n];
|
|
}
|
|
}
|