Files
Samuel Facchinello 74e51990c1 style: enable InvalidJavadocPosition in checkstyle (#5237)
enable style InvalidJavadocPosition

Co-authored-by: Samuel Facchinello <samuel.facchinello@piksel.com>
2024-06-18 19:34:22 +02:00

58 lines
1.8 KiB
Java

package com.thealgorithms.dynamicprogramming;
import java.util.Scanner;
/**
* This file contains an implementation of finding the nth CATALAN NUMBER using
* dynamic programming : <a href="https://en.wikipedia.org/wiki/Catalan_number">Wikipedia</a>
*
* Time Complexity: O(n^2) Space Complexity: O(n)
*
* @author <a href="https://github.com/amritesh19">AMRITESH ANAND</a>
*/
public final class CatalanNumber {
private CatalanNumber() {
}
/**
* This method finds the nth Catalan number
*
* @param n input n which determines the nth Catalan number n should be less
* than equal to 50 as 50th Catalan number is 6,533,841,209,031,609,592 for
* n > 50, BigInteger class should be used instead long
*
* @return catalanArray[n] the nth Catalan number
*/
static long findNthCatalan(int n) {
// Array to store the results of subproblems i.e Catalan numbers from [1...n-1]
long[] catalanArray = new long[n + 1];
// Initialising C₀ = 1 and C₁ = 1
catalanArray[0] = 1;
catalanArray[1] = 1;
/*
* The Catalan numbers satisfy the recurrence relation C₀=1 and Cn = Σ
* (Ci * Cn-1-i), i = 0 to n-1 , n > 0
*/
for (int i = 2; i <= n; i++) {
catalanArray[i] = 0;
for (int j = 0; j < i; j++) {
catalanArray[i] += catalanArray[j] * catalanArray[i - j - 1];
}
}
return catalanArray[n];
}
// Main method
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number n to find nth Catalan number (n <= 50)");
int n = sc.nextInt();
System.out.println(n + "th Catalan number is " + findNthCatalan(n));
sc.close();
}
}