mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-25 21:44:07 +08:00
128 lines
3.9 KiB
Java
128 lines
3.9 KiB
Java
package com.thealgorithms.misc;
|
|
|
|
import java.util.Scanner;
|
|
|
|
/*
|
|
* Wikipedia link : https://en.wikipedia.org/wiki/Invertible_matrix
|
|
*
|
|
* Here we use gauss elimination method to find the inverse of a given matrix.
|
|
* To understand gauss elimination method to find inverse of a matrix:
|
|
* https://www.sangakoo.com/en/unit/inverse-matrix-method-of-gaussian-elimination
|
|
*
|
|
* We can also find the inverse of a matrix
|
|
*/
|
|
public class InverseOfMatrix {
|
|
|
|
public static void main(String[] argv) {
|
|
Scanner input = new Scanner(System.in);
|
|
System.out.println("Enter the matrix size (Square matrix only): ");
|
|
int n = input.nextInt();
|
|
double[][] a = new double[n][n];
|
|
System.out.println("Enter the elements of matrix: ");
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < n; j++) {
|
|
a[i][j] = input.nextDouble();
|
|
}
|
|
}
|
|
|
|
double[][] d = invert(a);
|
|
System.out.println();
|
|
System.out.println("The inverse is: ");
|
|
for (int i = 0; i < n; ++i) {
|
|
for (int j = 0; j < n; ++j) {
|
|
System.out.print(d[i][j] + " ");
|
|
}
|
|
System.out.println();
|
|
}
|
|
input.close();
|
|
}
|
|
|
|
public static double[][] invert(double[][] a) {
|
|
int n = a.length;
|
|
double[][] x = new double[n][n];
|
|
double[][] b = new double[n][n];
|
|
int[] index = new int[n];
|
|
for (int i = 0; i < n; ++i) {
|
|
b[i][i] = 1;
|
|
}
|
|
|
|
// Transform the matrix into an upper triangle
|
|
gaussian(a, index);
|
|
|
|
// Update the matrix b[i][j] with the ratios stored
|
|
for (int i = 0; i < n - 1; ++i) {
|
|
for (int j = i + 1; j < n; ++j) {
|
|
for (int k = 0; k < n; ++k) {
|
|
b[index[j]][k] -= a[index[j]][i] * b[index[i]][k];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform backward substitutions
|
|
for (int i = 0; i < n; ++i) {
|
|
x[n - 1][i] = b[index[n - 1]][i] / a[index[n - 1]][n - 1];
|
|
for (int j = n - 2; j >= 0; --j) {
|
|
x[j][i] = b[index[j]][i];
|
|
for (int k = j + 1; k < n; ++k) {
|
|
x[j][i] -= a[index[j]][k] * x[k][i];
|
|
}
|
|
x[j][i] /= a[index[j]][j];
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
// Method to carry out the partial-pivoting Gaussian
|
|
// elimination. Here index[] stores pivoting order.
|
|
public static void gaussian(double[][] a, int[] index) {
|
|
int n = index.length;
|
|
double[] c = new double[n];
|
|
|
|
// Initialize the index
|
|
for (int i = 0; i < n; ++i) {
|
|
index[i] = i;
|
|
}
|
|
|
|
// Find the rescaling factors, one from each row
|
|
for (int i = 0; i < n; ++i) {
|
|
double c1 = 0;
|
|
for (int j = 0; j < n; ++j) {
|
|
double c0 = Math.abs(a[i][j]);
|
|
if (c0 > c1) {
|
|
c1 = c0;
|
|
}
|
|
}
|
|
c[i] = c1;
|
|
}
|
|
|
|
// Search the pivoting element from each column
|
|
int k = 0;
|
|
for (int j = 0; j < n - 1; ++j) {
|
|
double pi1 = 0;
|
|
for (int i = j; i < n; ++i) {
|
|
double pi0 = Math.abs(a[index[i]][j]);
|
|
pi0 /= c[index[i]];
|
|
if (pi0 > pi1) {
|
|
pi1 = pi0;
|
|
k = i;
|
|
}
|
|
}
|
|
// Interchange rows according to the pivoting order
|
|
int itmp = index[j];
|
|
index[j] = index[k];
|
|
index[k] = itmp;
|
|
for (int i = j + 1; i < n; ++i) {
|
|
double pj = a[index[i]][j] / a[index[j]][j];
|
|
|
|
// Record pivoting ratios below the diagonal
|
|
a[index[i]][j] = pj;
|
|
|
|
// Modify other elements accordingly
|
|
for (int l = j + 1; l < n; ++l) {
|
|
a[index[i]][l] -= pj * a[index[j]][l];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|