mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-05 16:27:33 +08:00

* test: RegexMatchingTest * checkstyle: fix formatting --------- Co-authored-by: alxkm <alx@alx.com> Co-authored-by: Andrii Siriak <siryaka@gmail.com>
201 lines
8.4 KiB
Java
201 lines
8.4 KiB
Java
package com.thealgorithms.dynamicprogramming;
|
|
|
|
/**
|
|
* Given a text and wildcard pattern implement a wildcard pattern matching
|
|
* algorithm that finds if wildcard is matched with text. The matching should
|
|
* cover the entire text ?-> matches single characters *-> match the sequence of
|
|
* characters
|
|
*
|
|
* For calculation of Time and Space Complexity. Let N be length of src and M be length of pat
|
|
*
|
|
* Memoization vs Tabulation : https://www.geeksforgeeks.org/tabulation-vs-memoization/
|
|
* Question Link : https://practice.geeksforgeeks.org/problems/wildcard-pattern-matching/1
|
|
*/
|
|
public final class RegexMatching {
|
|
private RegexMatching() {
|
|
}
|
|
|
|
/**
|
|
* Method 1: Determines if the given source string matches the given pattern using a recursive approach.
|
|
* This method directly applies recursion to check if the source string matches the pattern, considering
|
|
* the wildcards '?' and '*'.
|
|
*
|
|
* Time Complexity: O(2^(N+M)), where N is the length of the source string and M is the length of the pattern.
|
|
* Space Complexity: O(N + M) due to the recursion stack.
|
|
*
|
|
* @param src The source string to be matched against the pattern.
|
|
* @param pat The pattern containing wildcards ('*' matches a sequence of characters, '?' matches a single character).
|
|
* @return {@code true} if the source string matches the pattern, {@code false} otherwise.
|
|
*/
|
|
public static boolean regexRecursion(String src, String pat) {
|
|
if (src.length() == 0 && pat.length() == 0) {
|
|
return true;
|
|
}
|
|
if (src.length() != 0 && pat.length() == 0) {
|
|
return false;
|
|
}
|
|
if (src.length() == 0 && pat.length() != 0) {
|
|
for (int i = 0; i < pat.length(); i++) {
|
|
if (pat.charAt(i) != '*') {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
char chs = src.charAt(0);
|
|
char chp = pat.charAt(0);
|
|
|
|
String ros = src.substring(1);
|
|
String rop = pat.substring(1);
|
|
|
|
boolean ans;
|
|
if (chs == chp || chp == '?') {
|
|
ans = regexRecursion(ros, rop);
|
|
} else if (chp == '*') {
|
|
boolean blank = regexRecursion(src, rop);
|
|
boolean multiple = regexRecursion(ros, pat);
|
|
ans = blank || multiple;
|
|
} else {
|
|
ans = false;
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
/**
|
|
* Method 2: Determines if the given source string matches the given pattern using recursion.
|
|
* This method utilizes a virtual index for both the source string and the pattern to manage the recursion.
|
|
*
|
|
* Time Complexity: O(2^(N+M)) where N is the length of the source string and M is the length of the pattern.
|
|
* Space Complexity: O(N + M) due to the recursion stack.
|
|
*
|
|
* @param src The source string to be matched against the pattern.
|
|
* @param pat The pattern containing wildcards ('*' matches a sequence of characters, '?' matches a single character).
|
|
* @param svidx The current index in the source string.
|
|
* @param pvidx The current index in the pattern.
|
|
* @return {@code true} if the source string matches the pattern, {@code false} otherwise.
|
|
*/
|
|
static boolean regexRecursion(String src, String pat, int svidx, int pvidx) {
|
|
if (src.length() == svidx && pat.length() == pvidx) {
|
|
return true;
|
|
}
|
|
if (src.length() != svidx && pat.length() == pvidx) {
|
|
return false;
|
|
}
|
|
if (src.length() == svidx && pat.length() != pvidx) {
|
|
for (int i = pvidx; i < pat.length(); i++) {
|
|
if (pat.charAt(i) != '*') {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
char chs = src.charAt(svidx);
|
|
char chp = pat.charAt(pvidx);
|
|
|
|
boolean ans;
|
|
if (chs == chp || chp == '?') {
|
|
ans = regexRecursion(src, pat, svidx + 1, pvidx + 1);
|
|
} else if (chp == '*') {
|
|
boolean blank = regexRecursion(src, pat, svidx, pvidx + 1);
|
|
boolean multiple = regexRecursion(src, pat, svidx + 1, pvidx);
|
|
ans = blank || multiple;
|
|
} else {
|
|
ans = false;
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
/**
|
|
* Method 3: Determines if the given source string matches the given pattern using top-down dynamic programming (memoization).
|
|
* This method utilizes memoization to store intermediate results, reducing redundant computations and improving efficiency.
|
|
*
|
|
* Time Complexity: O(N * M), where N is the length of the source string and M is the length of the pattern.
|
|
* Space Complexity: O(N * M) for the memoization table, plus additional space for the recursion stack.
|
|
*
|
|
* @param src The source string to be matched against the pattern.
|
|
* @param pat The pattern containing wildcards ('*' matches a sequence of characters, '?' matches a single character).
|
|
* @param svidx The current index in the source string.
|
|
* @param pvidx The current index in the pattern.
|
|
* @param strg A 2D array used for memoization to store the results of subproblems.
|
|
* @return {@code true} if the source string matches the pattern, {@code false} otherwise.
|
|
*/
|
|
public static boolean regexRecursion(String src, String pat, int svidx, int pvidx, int[][] strg) {
|
|
if (src.length() == svidx && pat.length() == pvidx) {
|
|
return true;
|
|
}
|
|
if (src.length() != svidx && pat.length() == pvidx) {
|
|
return false;
|
|
}
|
|
if (src.length() == svidx && pat.length() != pvidx) {
|
|
for (int i = pvidx; i < pat.length(); i++) {
|
|
if (pat.charAt(i) != '*') {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
if (strg[svidx][pvidx] != 0) {
|
|
return strg[svidx][pvidx] != 1;
|
|
}
|
|
char chs = src.charAt(svidx);
|
|
char chp = pat.charAt(pvidx);
|
|
|
|
boolean ans;
|
|
if (chs == chp || chp == '?') {
|
|
ans = regexRecursion(src, pat, svidx + 1, pvidx + 1, strg);
|
|
} else if (chp == '*') {
|
|
boolean blank = regexRecursion(src, pat, svidx, pvidx + 1, strg);
|
|
boolean multiple = regexRecursion(src, pat, svidx + 1, pvidx, strg);
|
|
ans = blank || multiple;
|
|
} else {
|
|
ans = false;
|
|
}
|
|
strg[svidx][pvidx] = ans ? 2 : 1;
|
|
return ans;
|
|
}
|
|
|
|
/**
|
|
* Method 4: Determines if the given source string matches the given pattern using bottom-up dynamic programming (tabulation).
|
|
* This method builds a solution iteratively by filling out a table, where each cell represents whether a substring
|
|
* of the source string matches a substring of the pattern.
|
|
*
|
|
* Time Complexity: O(N * M), where N is the length of the source string and M is the length of the pattern.
|
|
* Space Complexity: O(N * M) for the table used in the tabulation process.
|
|
*
|
|
* @param src The source string to be matched against the pattern.
|
|
* @param pat The pattern containing wildcards ('*' matches a sequence of characters, '?' matches a single character).
|
|
* @return {@code true} if the source string matches the pattern, {@code false} otherwise.
|
|
*/
|
|
static boolean regexBU(String src, String pat) {
|
|
boolean[][] strg = new boolean[src.length() + 1][pat.length() + 1];
|
|
strg[src.length()][pat.length()] = true;
|
|
for (int row = src.length(); row >= 0; row--) {
|
|
for (int col = pat.length() - 1; col >= 0; col--) {
|
|
if (row == src.length()) {
|
|
if (pat.charAt(col) == '*') {
|
|
strg[row][col] = strg[row][col + 1];
|
|
} else {
|
|
strg[row][col] = false;
|
|
}
|
|
} else {
|
|
char chs = src.charAt(row);
|
|
char chp = pat.charAt(col);
|
|
|
|
boolean ans;
|
|
if (chs == chp || chp == '?') {
|
|
ans = strg[row + 1][col + 1];
|
|
} else if (chp == '*') {
|
|
boolean blank = strg[row][col + 1];
|
|
boolean multiple = strg[row + 1][col];
|
|
ans = blank || multiple;
|
|
} else {
|
|
ans = false;
|
|
}
|
|
strg[row][col] = ans;
|
|
}
|
|
}
|
|
}
|
|
return strg[0][0];
|
|
}
|
|
}
|