package com.thealgorithms.dynamicprogramming; import java.util.HashMap; import java.util.Map; import java.util.Scanner; /** * @author Varun Upadhyay (https://github.com/varunu28) */ public class Fibonacci { private static Map map = new HashMap<>(); public static void main(String[] args) { // Methods all returning [0, 1, 1, 2, 3, 5, ...] for n = [0, 1, 2, 3, 4, 5, ...] Scanner sc = new Scanner(System.in); int n = sc.nextInt(); System.out.println(fibMemo(n)); System.out.println(fibBotUp(n)); System.out.println(fibOptimized(n)); System.out.println(fibBinet(n)); sc.close(); } /** * This method finds the nth fibonacci number using memoization technique * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number */ public static int fibMemo(int n) { if (map.containsKey(n)) { return map.get(n); } int f; if (n <= 1) { f = n; } else { f = fibMemo(n - 1) + fibMemo(n - 2); map.put(n, f); } return f; } /** * This method finds the nth fibonacci number using bottom up * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number */ public static int fibBotUp(int n) { Map fib = new HashMap<>(); for (int i = 0; i <= n; i++) { int f; if (i <= 1) { f = i; } else { f = fib.get(i - 1) + fib.get(i - 2); } fib.put(i, f); } return fib.get(n); } /** * This method finds the nth fibonacci number using bottom up * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth fibonacci number *

* This is optimized version of Fibonacci Program. Without using Hashmap and * recursion. It saves both memory and time. Space Complexity will be O(1) * Time Complexity will be O(n) *

* Whereas , the above functions will take O(n) Space. * @author Shoaib Rayeen (https://github.com/shoaibrayeen) */ public static int fibOptimized(int n) { if (n == 0) { return 0; } int prev = 0, res = 1, next; for (int i = 2; i <= n; i++) { next = prev + res; prev = res; res = next; } return res; } /** * We have only defined the nth Fibonacci number in terms of the two before it. Now, we will * look at Binet's formula to calculate the nth Fibonacci number in constant time. The Fibonacci * terms maintain a ratio called golden ratio denoted by Φ, the Greek character pronounced * ‘phi'. First, let's look at how the golden ratio is calculated: Φ = ( 1 + √5 )/2 * = 1.6180339887... Now, let's look at Binet's formula: Sn = Φⁿ–(– Φ⁻ⁿ)/√5 We first calculate * the squareRootof5 and phi and store them in variables. Later, we apply Binet's formula to get * the required term. Time Complexity will be O(1) */ public static int fibBinet(int n) { double squareRootOf5 = Math.sqrt(5); double phi = (1 + squareRootOf5) / 2; int nthTerm = (int) ((Math.pow(phi, n) - Math.pow(-phi, -n)) / squareRootOf5); return nthTerm; } }