package com.thealgorithms.stacks; import java.util.Arrays; import java.util.Stack; /** * Given an integer array. The task is to find the maximum of the minimum of * every window size in the array. Note: Window size varies from 1 to the size * of the Array. *

* For example, *

* N = 7 * arr[] = {10,20,30,50,10,70,30} *

* So the answer for the above would be : 70 30 20 10 10 10 10 *

* We need to consider window sizes from 1 to length of array in each iteration. * So in the iteration 1 the windows would be [10], [20], [30], [50], [10], * [70], [30]. Now we need to check the minimum value in each window. Since the * window size is 1 here the minimum element would be the number itself. Now the * maximum out of these is the result in iteration 1. In the second iteration we * need to consider window size 2, so there would be [10,20], [20,30], [30,50], * [50,10], [10,70], [70,30]. Now the minimum of each window size would be * [10,20,30,10,10] and the maximum out of these is 30. Similarly we solve for * other window sizes. * * @author sahil */ public final class MaximumMinimumWindow { private MaximumMinimumWindow() { } /** * This function contains the logic of finding maximum of minimum for every * window size using Stack Data Structure. * * @param arr Array containing the numbers * @param n Length of the array * @return result array */ public static int[] calculateMaxOfMin(int[] arr, int n) { Stack s = new Stack<>(); int[] left = new int[n + 1]; int[] right = new int[n + 1]; for (int i = 0; i < n; i++) { left[i] = -1; right[i] = n; } for (int i = 0; i < n; i++) { while (!s.empty() && arr[s.peek()] >= arr[i]) { s.pop(); } if (!s.empty()) { left[i] = s.peek(); } s.push(i); } while (!s.empty()) { s.pop(); } for (int i = n - 1; i >= 0; i--) { while (!s.empty() && arr[s.peek()] >= arr[i]) { s.pop(); } if (!s.empty()) { right[i] = s.peek(); } s.push(i); } int[] ans = new int[n + 1]; for (int i = 0; i <= n; i++) { ans[i] = 0; } for (int i = 0; i < n; i++) { int len = right[i] - left[i] - 1; ans[len] = Math.max(ans[len], arr[i]); } for (int i = n - 1; i >= 1; i--) { ans[i] = Math.max(ans[i], ans[i + 1]); } // Print the result for (int i = 1; i <= n; i++) { System.out.print(ans[i] + " "); } return ans; } public static void main(String[] args) { int[] arr = new int[] {10, 20, 30, 50, 10, 70, 30}; int[] target = new int[] {70, 30, 20, 10, 10, 10, 10}; int[] res = calculateMaxOfMin(arr, arr.length); assert Arrays.equals(target, res); } }