package com.thealgorithms.matrixexponentiation; import java.util.Scanner; /** * @author Anirudh Buvanesh (https://github.com/anirudhb11) For more information * see https://www.geeksforgeeks.org/matrix-exponentiation/ * */ public final class Fibonacci { private Fibonacci() { } // Exponentiation matrix for Fibonacci sequence private static final int[][] FIB_MATRIX = {{1, 1}, {1, 0}}; private static final int[][] IDENTITY_MATRIX = {{1, 0}, {0, 1}}; // First 2 fibonacci numbers private static final int[][] BASE_FIB_NUMBERS = {{1}, {0}}; /** * Performs multiplication of 2 matrices * * @param matrix1 * @param matrix2 * @return The product of matrix1 and matrix2 */ private static int[][] matrixMultiplication(int[][] matrix1, int[][] matrix2) { // Check if matrices passed can be multiplied int rowsInMatrix1 = matrix1.length; int columnsInMatrix1 = matrix1[0].length; int rowsInMatrix2 = matrix2.length; int columnsInMatrix2 = matrix2[0].length; assert columnsInMatrix1 == rowsInMatrix2; int[][] product = new int[rowsInMatrix1][columnsInMatrix2]; for (int rowIndex = 0; rowIndex < rowsInMatrix1; rowIndex++) { for (int colIndex = 0; colIndex < columnsInMatrix2; colIndex++) { int matrixEntry = 0; for (int intermediateIndex = 0; intermediateIndex < columnsInMatrix1; intermediateIndex++) { matrixEntry += matrix1[rowIndex][intermediateIndex] * matrix2[intermediateIndex][colIndex]; } product[rowIndex][colIndex] = matrixEntry; } } return product; } /** * Calculates the fibonacci number using matrix exponentiaition technique * * @param n The input n for which we have to determine the fibonacci number * Outputs the nth * fibonacci number * @return a 2 X 1 array as { {F_n+1}, {F_n} } */ public static int[][] fib(int n) { if (n == 0) { return Fibonacci.IDENTITY_MATRIX; } else { int[][] cachedResult = fib(n / 2); int[][] matrixExpResult = matrixMultiplication(cachedResult, cachedResult); if (n % 2 == 0) { return matrixExpResult; } else { return matrixMultiplication(Fibonacci.FIB_MATRIX, matrixExpResult); } } } public static void main(String[] args) { // Returns [0, 1, 1, 2, 3, 5 ..] for n = [0, 1, 2, 3, 4, 5.. ] Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[][] result = matrixMultiplication(fib(n), BASE_FIB_NUMBERS); System.out.println("Fib(" + n + ") = " + result[1][0]); sc.close(); } }