package com.thealgorithms.puzzlesandgames; /** * A class that provides methods to solve Sudoku puzzles of any n x n size * using a backtracking approach, where n must be a perfect square. * The algorithm checks for safe number placements in rows, columns, * and subgrids (which are sqrt(n) x sqrt(n) in size) and recursively solves the puzzle. * Though commonly used for 9x9 grids, it is adaptable to other valid Sudoku dimensions. */ final class Sudoku { private Sudoku() { } /** * Checks if placing a number in a specific position on the Sudoku board is safe. * The number is considered safe if it does not violate any of the Sudoku rules: * - It should not be present in the same row. * - It should not be present in the same column. * - It should not be present in the corresponding 3x3 subgrid. * - It should not be present in the corresponding subgrid, which is sqrt(n) x sqrt(n) in size (e.g., for a 9x9 grid, the subgrid will be 3x3). * * @param board The current state of the Sudoku board. * @param row The row index where the number is to be placed. * @param col The column index where the number is to be placed. * @param num The number to be placed on the board. * @return True if the placement is safe, otherwise false. */ public static boolean isSafe(int[][] board, int row, int col, int num) { // Check the row for duplicates for (int d = 0; d < board.length; d++) { if (board[row][d] == num) { return false; } } // Check the column for duplicates for (int r = 0; r < board.length; r++) { if (board[r][col] == num) { return false; } } // Check the corresponding 3x3 subgrid for duplicates int sqrt = (int) Math.sqrt(board.length); int boxRowStart = row - row % sqrt; int boxColStart = col - col % sqrt; for (int r = boxRowStart; r < boxRowStart + sqrt; r++) { for (int d = boxColStart; d < boxColStart + sqrt; d++) { if (board[r][d] == num) { return false; } } } return true; } /** * Solves the Sudoku puzzle using backtracking. * The algorithm finds an empty cell and tries placing numbers * from 1 to n, where n is the size of the board * (for example, from 1 to 9 in a standard 9x9 Sudoku). * The algorithm finds an empty cell and tries placing numbers from 1 to 9. * The standard version of Sudoku uses numbers from 1 to 9, so the algorithm can be * easily modified for other variations of the game. * If a number placement is valid (checked via `isSafe`), the number is * placed and the function recursively attempts to solve the rest of the puzzle. * If no solution is possible, the number is removed (backtracked), * and the process is repeated. * * @param board The current state of the Sudoku board. * @param n The size of the Sudoku board (typically 9 for a standard puzzle). * @return True if the Sudoku puzzle is solvable, false otherwise. */ public static boolean solveSudoku(int[][] board, int n) { int row = -1; int col = -1; boolean isEmpty = true; // Find the next empty cell for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (board[i][j] == 0) { row = i; col = j; isEmpty = false; break; } } if (!isEmpty) { break; } } // No empty space left if (isEmpty) { return true; } // Try placing numbers 1 to n in the empty cell (n should be a perfect square) // Eg: n=9 for a standard 9x9 Sudoku puzzle, n=16 for a 16x16 puzzle, etc. for (int num = 1; num <= n; num++) { if (isSafe(board, row, col, num)) { board[row][col] = num; if (solveSudoku(board, n)) { return true; } else { // replace it board[row][col] = 0; } } } return false; } /** * Prints the current state of the Sudoku board in a readable format. * Each row is printed on a new line, with numbers separated by spaces. * * @param board The current state of the Sudoku board. * @param n The size of the Sudoku board (typically 9 for a standard puzzle). */ public static void print(int[][] board, int n) { // Print the board in a nxn grid format // if n=9, print the board in a 9x9 grid format // if n=16, print the board in a 16x16 grid format for (int r = 0; r < n; r++) { for (int d = 0; d < n; d++) { System.out.print(board[r][d]); System.out.print(" "); } System.out.print("\n"); if ((r + 1) % (int) Math.sqrt(n) == 0) { System.out.print(""); } } } /** * The driver method to demonstrate solving a Sudoku puzzle. * A sample 9x9 Sudoku puzzle is provided, and the program attempts to solve it * using the `solveSudoku` method. If a solution is found, it is printed to the console. * * @param args Command-line arguments (not used in this program). */ public static void main(String[] args) { int[][] board = new int[][] { {3, 0, 6, 5, 0, 8, 4, 0, 0}, {5, 2, 0, 0, 0, 0, 0, 0, 0}, {0, 8, 7, 0, 0, 0, 0, 3, 1}, {0, 0, 3, 0, 1, 0, 0, 8, 0}, {9, 0, 0, 8, 6, 3, 0, 0, 5}, {0, 5, 0, 0, 9, 0, 6, 0, 0}, {1, 3, 0, 0, 0, 0, 2, 5, 0}, {0, 0, 0, 0, 0, 0, 0, 7, 4}, {0, 0, 5, 2, 0, 6, 3, 0, 0}, }; int n = board.length; if (solveSudoku(board, n)) { print(board, n); } else { System.out.println("No solution"); } } }