package com.thealgorithms.dynamicprogramming; /** * The Needleman–Wunsch algorithm performs global sequence alignment between two strings. * It computes the optimal alignment score using dynamic programming, * given a scoring scheme for matches, mismatches, and gaps. * * Time Complexity: O(n * m) * Space Complexity: O(n * m) */ public final class NeedlemanWunsch { private NeedlemanWunsch() { // Utility Class } /** * Computes the Needleman–Wunsch global alignment score between two strings. * * @param s1 the first string * @param s2 the second string * @param matchScore score for a character match * @param mismatchPenalty penalty for a mismatch (should be negative) * @param gapPenalty penalty for inserting a gap (should be negative) * @return the optimal alignment score */ public static int align(String s1, String s2, int matchScore, int mismatchPenalty, int gapPenalty) { if (s1 == null || s2 == null) { throw new IllegalArgumentException("Input strings must not be null."); } int n = s1.length(); int m = s2.length(); int[][] dp = new int[n + 1][m + 1]; // Initialize gap penalties for first row and column for (int i = 0; i <= n; i++) { dp[i][0] = i * gapPenalty; } for (int j = 0; j <= m; j++) { dp[0][j] = j * gapPenalty; } // Fill the DP matrix for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int matchOrMismatch = (s1.charAt(i - 1) == s2.charAt(j - 1)) ? matchScore : mismatchPenalty; dp[i][j] = Math.max(Math.max(dp[i - 1][j - 1] + matchOrMismatch, // match/mismatch dp[i - 1][j] + gapPenalty // deletion (gap in s2) ), dp[i][j - 1] + gapPenalty // insertion (gap in s1) ); } } return dp[n][m]; } }