package com.thealgorithms.searches; import com.thealgorithms.devutils.searches.SearchAlgorithm; /** * Binary search is one of the most popular algorithms The algorithm finds the * position of a target value within a sorted array * *

* Worst-case performance O(log n) Best-case performance O(1) Average * performance O(log n) Worst-case space complexity O(1) * * @author Varun Upadhyay (https://github.com/varunu28) * @author Podshivalov Nikita (https://github.com/nikitap492) * @see SearchAlgorithm * @see IterativeBinarySearch */ class BinarySearch implements SearchAlgorithm { /** * @param array is an array where the element should be found * @param key is an element which should be found * @param is any comparable type * @return index of the element */ @Override public > int find(T[] array, T key) { return search(array, key, 0, array.length - 1); } /** * This method implements the Generic Binary Search * * @param array The array to make the binary search * @param key The number you are looking for * @param left The lower bound * @param right The upper bound * @return the location of the key */ private > int search(T[] array, T key, int left, int right) { if (right < left) { return -1; // this means that the key not found } // find median int median = (left + right) >>> 1; int comp = key.compareTo(array[median]); if (comp == 0) { return median; } else if (comp < 0) { return search(array, key, left, median - 1); } else { return search(array, key, median + 1, right); } } }