package com.thealgorithms.searches;
import com.thealgorithms.devutils.searches.SearchAlgorithm;
/**
* Binary search is one of the most popular algorithms The algorithm finds the
* position of a target value within a sorted array
*
*
* Worst-case performance O(log n) Best-case performance O(1) Average
* performance O(log n) Worst-case space complexity O(1)
*
* @author Varun Upadhyay (https://github.com/varunu28)
* @author Podshivalov Nikita (https://github.com/nikitap492)
* @see SearchAlgorithm
* @see IterativeBinarySearch
*/
class BinarySearch implements SearchAlgorithm {
/**
* @param array is an array where the element should be found
* @param key is an element which should be found
* @param is any comparable type
* @return index of the element
*/
@Override
public > int find(T[] array, T key) {
return search(array, key, 0, array.length - 1);
}
/**
* This method implements the Generic Binary Search
*
* @param array The array to make the binary search
* @param key The number you are looking for
* @param left The lower bound
* @param right The upper bound
* @return the location of the key
*/
private > int search(T[] array, T key, int left, int right) {
if (right < left) {
return -1; // this means that the key not found
}
// find median
int median = (left + right) >>> 1;
int comp = key.compareTo(array[median]);
if (comp == 0) {
return median;
} else if (comp < 0) {
return search(array, key, left, median - 1);
} else {
return search(array, key, median + 1, right);
}
}
}