/** Author : Suraj Kumar Modi * https://github.com/skmodi649 */ /** You are given a number n. You need to find the digital root of n. * DigitalRoot of a number is the recursive sum of its digits until we get a single digit number. * * Test Case 1: * Input: * n = 1 * Output: 1 * Explanation: Digital root of 1 is 1 * * Test Case 2: * Input: * n = 99999 * Output: 9 * Explanation: Sum of digits of 99999 is 45 * which is not a single digit number, hence * sum of digit of 45 is 9 which is a single * digit number. */ /** Algorithm : * Step 1 : Define a method digitalRoot(int n) * Step 2 : Define another method single(int n) * Step 3 : digitalRoot(int n) method takes output of single(int n) as input * if(single(int n) <= 9) * return single(n) * else * return digitalRoot(single(n)) * Step 4 : single(int n) calculates the sum of digits of number n recursively * if(n<=9) * return n; * else * return (n%10) + (n/10) * Step 5 : In main method simply take n as input and then call digitalRoot(int n) function and print the result */ package com.thealgorithms.maths; class DigitalRoot { public static int digitalRoot(int n) { if (single(n) <= 9) { // If n is already single digit than simply call single method and return the value return single(n); } else { return digitalRoot(single(n)); } } // This function is used for finding the sum of digits of number public static int single(int n) { if (n <= 9) { // if n becomes less than 10 than return n return n; } else { return (n % 10) + single(n / 10); // n % 10 for extracting digits one by one } } // n / 10 is the number obtainded after removing the digit one by one // Sum of digits is stored in the Stack memory and then finally returned } /** * Time Complexity : O((Number of Digits)^2) Auxiliary Space Complexity : * O(Number of Digits) Constraints : 1 <= n <= 10^7 */