package com.thealgorithms.dynamicprogramming; /** * Algorithm explanation * https://www.educative.io/edpresso/longest-palindromic-subsequence-algorithm */ public final class LongestPalindromicSubsequence { private LongestPalindromicSubsequence() { } public static void main(String[] args) { String a = "BBABCBCAB"; String b = "BABCBAB"; String aLPS = lps(a); String bLPS = lps(b); System.out.println(a + " => " + aLPS); System.out.println(b + " => " + bLPS); } public static String lps(String original) throws IllegalArgumentException { StringBuilder reverse = new StringBuilder(original); reverse = reverse.reverse(); return recursiveLPS(original, reverse.toString()); } private static String recursiveLPS(String original, String reverse) { String bestResult = ""; // no more chars, then return empty if (original.length() == 0 || reverse.length() == 0) { bestResult = ""; } else { // if the last chars match, then remove it from both strings and recur if (original.charAt(original.length() - 1) == reverse.charAt(reverse.length() - 1)) { String bestSubResult = recursiveLPS(original.substring(0, original.length() - 1), reverse.substring(0, reverse.length() - 1)); bestResult = reverse.charAt(reverse.length() - 1) + bestSubResult; } else { // otherwise (1) ignore the last character of reverse, and recur on original and // updated reverse again (2) ignore the last character of original and recur on the // updated original and reverse again then select the best result from these two // subproblems. String bestSubResult1 = recursiveLPS(original, reverse.substring(0, reverse.length() - 1)); String bestSubResult2 = recursiveLPS(original.substring(0, original.length() - 1), reverse); if (bestSubResult1.length() > bestSubResult2.length()) { bestResult = bestSubResult1; } else { bestResult = bestSubResult2; } } } return bestResult; } }