package com.thealgorithms.dynamicprogramming; import java.util.Scanner; /** * This file contains an implementation of finding the nth CATALAN NUMBER using * dynamic programming : Wikipedia * * Time Complexity: O(n^2) Space Complexity: O(n) * * @author AMRITESH ANAND */ public final class CatalanNumber { private CatalanNumber() { } /** * This method finds the nth Catalan number * * @param n input n which determines the nth Catalan number n should be less * than equal to 50 as 50th Catalan number is 6,533,841,209,031,609,592 for * n > 50, BigInteger class should be used instead long * * @return catalanArray[n] the nth Catalan number */ static long findNthCatalan(int n) { // Array to store the results of subproblems i.e Catalan numbers from [1...n-1] long[] catalanArray = new long[n + 1]; // Initialising C₀ = 1 and C₁ = 1 catalanArray[0] = 1; catalanArray[1] = 1; /* * The Catalan numbers satisfy the recurrence relation C₀=1 and Cn = Σ * (Ci * Cn-1-i), i = 0 to n-1 , n > 0 */ for (int i = 2; i <= n; i++) { catalanArray[i] = 0; for (int j = 0; j < i; j++) { catalanArray[i] += catalanArray[j] * catalanArray[i - j - 1]; } } return catalanArray[n]; } // Main method public static void main(String[] args) { Scanner sc = new Scanner(System.in); System.out.println("Enter the number n to find nth Catalan number (n <= 50)"); int n = sc.nextInt(); System.out.println(n + "th Catalan number is " + findNthCatalan(n)); sc.close(); } }