package com.thealgorithms.misc; import java.util.Scanner; /* * Wikipedia link : https://en.wikipedia.org/wiki/Invertible_matrix * * Here we use gauss elimination method to find the inverse of a given matrix. * To understand gauss elimination method to find inverse of a matrix: https://www.sangakoo.com/en/unit/inverse-matrix-method-of-gaussian-elimination * * We can also find the inverse of a matrix */ public class InverseOfMatrix { public static void main(String argv[]) { Scanner input = new Scanner(System.in); System.out.println("Enter the matrix size (Square matrix only): "); int n = input.nextInt(); double a[][] = new double[n][n]; System.out.println("Enter the elements of matrix: "); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { a[i][j] = input.nextDouble(); } } double d[][] = invert(a); System.out.println(); System.out.println("The inverse is: "); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { System.out.print(d[i][j] + " "); } System.out.println(); } input.close(); } public static double[][] invert(double a[][]) { int n = a.length; double x[][] = new double[n][n]; double b[][] = new double[n][n]; int index[] = new int[n]; for (int i = 0; i < n; ++i) { b[i][i] = 1; } // Transform the matrix into an upper triangle gaussian(a, index); // Update the matrix b[i][j] with the ratios stored for (int i = 0; i < n - 1; ++i) { for (int j = i + 1; j < n; ++j) { for (int k = 0; k < n; ++k) { b[index[j]][k] -= a[index[j]][i] * b[index[i]][k]; } } } // Perform backward substitutions for (int i = 0; i < n; ++i) { x[n - 1][i] = b[index[n - 1]][i] / a[index[n - 1]][n - 1]; for (int j = n - 2; j >= 0; --j) { x[j][i] = b[index[j]][i]; for (int k = j + 1; k < n; ++k) { x[j][i] -= a[index[j]][k] * x[k][i]; } x[j][i] /= a[index[j]][j]; } } return x; } // Method to carry out the partial-pivoting Gaussian // elimination. Here index[] stores pivoting order. public static void gaussian(double a[][], int index[]) { int n = index.length; double c[] = new double[n]; // Initialize the index for (int i = 0; i < n; ++i) { index[i] = i; } // Find the rescaling factors, one from each row for (int i = 0; i < n; ++i) { double c1 = 0; for (int j = 0; j < n; ++j) { double c0 = Math.abs(a[i][j]); if (c0 > c1) { c1 = c0; } } c[i] = c1; } // Search the pivoting element from each column int k = 0; for (int j = 0; j < n - 1; ++j) { double pi1 = 0; for (int i = j; i < n; ++i) { double pi0 = Math.abs(a[index[i]][j]); pi0 /= c[index[i]]; if (pi0 > pi1) { pi1 = pi0; k = i; } } // Interchange rows according to the pivoting order int itmp = index[j]; index[j] = index[k]; index[k] = itmp; for (int i = j + 1; i < n; ++i) { double pj = a[index[i]][j] / a[index[j]][j]; // Record pivoting ratios below the diagonal a[index[i]][j] = pj; // Modify other elements accordingly for (int l = j + 1; l < n; ++l) { a[index[i]][l] -= pj * a[index[j]][l]; } } } } }