package com.thealgorithms.maths; /** * Calculates the generic root (repeated digital sum) of a non-negative integer. *

* For example, the generic root of 12345 is calculated as: * 1 + 2 + 3 + 4 + 5 = 15, * then 1 + 5 = 6, so the generic root is 6. *

* Reference: * https://technotip.com/6774/c-program-to-find-generic-root-of-a-number/ */ public final class GenericRoot { private static final int BASE = 10; private GenericRoot() { } /** * Computes the sum of the digits of a non-negative integer in base 10. * * @param n non-negative integer * @return sum of digits of {@code n} */ private static int sumOfDigits(final int n) { assert n >= 0; if (n < BASE) { return n; } return (n % BASE) + sumOfDigits(n / BASE); } /** * Computes the generic root (repeated digital sum) of an integer. * For negative inputs, the absolute value is used. * * @param n integer input * @return generic root of {@code n} */ public static int genericRoot(final int n) { int number = Math.abs(n); if (number < BASE) { return number; } return genericRoot(sumOfDigits(number)); } }