package com.thealgorithms.dynamicprogramming; import java.util.Arrays; /** * Recursive Solution for 0-1 knapsack with memoization * This method is basically an extension to the recursive approach so that we * can overcome the problem of calculating redundant cases and thus increased * complexity. We can solve this problem by simply creating a 2-D array that can * store a particular state (n, w) if we get it the first time. */ public class KnapsackMemoization { int knapSack(int capacity, int[] weights, int[] profits, int numOfItems) { // Declare the table dynamically int[][] dpTable = new int[numOfItems + 1][capacity + 1]; // Loop to initially fill the table with -1 for (int[] table : dpTable) { Arrays.fill(table, -1); } return solveKnapsackRecursive(capacity, weights, profits, numOfItems, dpTable); } // Returns the value of maximum profit using recursive approach int solveKnapsackRecursive(int capacity, int[] weights, int[] profits, int numOfItems, int[][] dpTable) { // Base condition if (numOfItems == 0 || capacity == 0) { return 0; } if (dpTable[numOfItems][capacity] != -1) { return dpTable[numOfItems][capacity]; } if (weights[numOfItems - 1] > capacity) { // Store the value of function call stack in table dpTable[numOfItems][capacity] = solveKnapsackRecursive(capacity, weights, profits, numOfItems - 1, dpTable); } else { // case 1. include the item, if it is less than the capacity final int includeCurrentItem = profits[numOfItems - 1] + solveKnapsackRecursive(capacity - weights[numOfItems - 1], weights, profits, numOfItems - 1, dpTable); // case 2. exclude the item if it is more than the capacity final int excludeCurrentItem = solveKnapsackRecursive(capacity, weights, profits, numOfItems - 1, dpTable); // Store the value of function call stack in table and return dpTable[numOfItems][capacity] = Math.max(includeCurrentItem, excludeCurrentItem); } return dpTable[numOfItems][capacity]; } }