package com.thealgorithms.maths; /** * This class provides methods for calculating Fibonacci numbers using Binet's formula. * Binet's formula is based on the golden ratio and allows computing Fibonacci numbers efficiently. * * @see Binet's formula on Wikipedia */ public final class FibonacciNumberGoldenRation { private FibonacciNumberGoldenRation() { // Private constructor to prevent instantiation of this utility class. } /** * Compute the limit for 'n' that fits in a long data type. * Reducing the limit to 70 due to potential floating-point arithmetic errors * that may result in incorrect results for larger inputs. */ public static final int MAX_ARG = 70; /** * Calculates the nth Fibonacci number using Binet's formula. * * @param n The index of the Fibonacci number to calculate. * @return The nth Fibonacci number as a long. * @throws IllegalArgumentException if the input 'n' is negative or exceeds the range of a long data type. */ public static long compute(int n) { if (n < 0) { throw new IllegalArgumentException("Input 'n' must be a non-negative integer."); } if (n > MAX_ARG) { throw new IllegalArgumentException("Input 'n' is too big to give accurate result."); } if (n <= 1) { return n; } // Calculate the nth Fibonacci number using the golden ratio formula final double sqrt5 = Math.sqrt(5); final double phi = (1 + sqrt5) / 2; final double psi = (1 - sqrt5) / 2; final double result = (Math.pow(phi, n) - Math.pow(psi, n)) / sqrt5; // Round to the nearest integer and return as a long return Math.round(result); } }