package com.thealgorithms.maths; /** * This class provides methods to compute the Greatest Common Divisor (GCD) of two or more integers. * * The Greatest Common Divisor (GCD) of two or more integers is the largest positive integer that divides each of the integers without leaving a remainder. * * The GCD can be computed using the Euclidean algorithm, which is based on the principle that the GCD of two numbers also divides their difference. * * For more information, refer to the * Greatest Common Divisor Wikipedia page. * * Example usage: *
 * int result1 = GCD.gcd(48, 18);
 * System.out.println("GCD of 48 and 18: " + result1); // Output: 6
 *
 * int result2 = GCD.gcd(48, 18, 30);
 * System.out.println("GCD of 48, 18, and 30: " + result2); // Output: 6
 * 
* @author Oskar Enmalm 3/10/17 */ public final class GCD { private GCD() { } /** * get the greatest common divisor * * @param num1 the first number * @param num2 the second number * @return gcd */ public static int gcd(int num1, int num2) { if (num1 < 0 || num2 < 0) { throw new ArithmeticException(); } if (num1 == 0 || num2 == 0) { return Math.abs(num1 - num2); } while (num1 % num2 != 0) { int remainder = num1 % num2; num1 = num2; num2 = remainder; } return num2; } /** * @brief computes gcd of an array of numbers * * @param numbers the input array * @return gcd of all of the numbers in the input array */ public static int gcd(int... numbers) { int result = 0; for (final var number : numbers) { result = gcd(result, number); } return result; } }