package com.thealgorithms.dynamicprogramming; /* * Problem Statement: - * Find Longest Alternating Subsequence * A sequence {x1, x2, .. xn} is alternating sequence if its elements satisfy one of the following relations : x1 < x2 > x3 < x4 > x5 < …. xn or x1 > x2 < x3 > x4 < x5 > …. xn */ public class LongestAlternatingSubsequence { /* Function to return longest alternating subsequence length*/ static int AlternatingLength(int[] arr, int n) { /* las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int[][] las = new int[n][2]; // las = LongestAlternatingSubsequence for (int i = 0; i < n; i++) { las[i][0] = las[i][1] = 1; } int result = 1; // Initialize result /* Compute values in bottom up manner */ for (int i = 1; i < n; i++) { /* Consider all elements as previous of arr[i]*/ for (int j = 0; j < i; j++) { /* If arr[i] is greater, then check with las[j][1] */ if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) { las[i][0] = las[j][1] + 1; } /* If arr[i] is smaller, then check with las[j][0]*/ if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) { las[i][1] = las[j][0] + 1; } } /* Pick maximum of both values at index i */ if (result < Math.max(las[i][0], las[i][1])) { result = Math.max(las[i][0], las[i][1]); } } return result; } public static void main(String[] args) { int[] arr = {10, 22, 9, 33, 49, 50, 31, 60}; int n = arr.length; System.out.println("Length of Longest " + "alternating subsequence is " + AlternatingLength(arr, n)); } }