package com.thealgorithms.maths; /** * This class represents a complex number which has real and imaginary part */ class ComplexNumber { Double real; Double imaginary; ComplexNumber(double real, double imaginary) { this.real = real; this.imaginary = imaginary; } ComplexNumber(double real) { this.real = real; this.imaginary = null; } } /** * Quadratic Equation Formula is used to find * the roots of a quadratic equation of the form ax^2 + bx + c = 0 * * @see Quadratic Equation */ public class QuadraticEquationSolver { /** * Function takes in the coefficients of the quadratic equation * * @param a is the coefficient of x^2 * @param b is the coefficient of x * @param c is the constant * @return roots of the equation which are ComplexNumber type */ public ComplexNumber[] solveEquation(double a, double b, double c) { double discriminant = b * b - 4 * a * c; // if discriminant is positive, roots will be different if (discriminant > 0) { return new ComplexNumber[] {new ComplexNumber((-b + Math.sqrt(discriminant)) / (2 * a)), new ComplexNumber((-b - Math.sqrt(discriminant)) / (2 * a))}; } // if discriminant is zero, roots will be same if (discriminant == 0) { return new ComplexNumber[] {new ComplexNumber((-b) / (2 * a))}; } // if discriminant is negative, roots will have imaginary parts if (discriminant < 0) { double realPart = -b / (2 * a); double imaginaryPart = Math.sqrt(-discriminant) / (2 * a); return new ComplexNumber[] {new ComplexNumber(realPart, imaginaryPart), new ComplexNumber(realPart, -imaginaryPart)}; } // return no roots return new ComplexNumber[] {}; } }