package com.thealgorithms.dynamicprogramming; /* The Sum of Subset problem determines whether a subset of elements from a given array sums up to a specific target value. */ public final class SubsetSumSpaceOptimized { private SubsetSumSpaceOptimized() { } /** * This method checks whether the subset of an array * contains a given sum or not. This is an space * optimized solution using 1D boolean array * Time Complexity: O(n * sum), Space complexity: O(sum) * * @param arr An array containing integers * @param sum The target sum of the subset * @return True or False */ public static boolean isSubsetSum(int[] arr, int sum) { int n = arr.length; // Declare the boolean array with size sum + 1 boolean[] dp = new boolean[sum + 1]; // Initialize the first element as true dp[0] = true; // Find the subset sum using 1D array for (int i = 0; i < n; i++) { for (int j = sum; j >= arr[i]; j--) { dp[j] = dp[j] || dp[j - arr[i]]; } } return dp[sum]; } }