mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
Added BitwiseGCD.java and BitwiseGCDTest.java (#6545)
This commit is contained in:
147
src/main/java/com/thealgorithms/bitmanipulation/BitwiseGCD.java
Normal file
147
src/main/java/com/thealgorithms/bitmanipulation/BitwiseGCD.java
Normal file
@@ -0,0 +1,147 @@
|
||||
package com.thealgorithms.bitmanipulation;
|
||||
|
||||
import java.math.BigInteger;
|
||||
|
||||
/**
|
||||
* Bitwise GCD implementation with full-range support utilities.
|
||||
*
|
||||
* <p>This class provides a fast binary (Stein's) GCD implementation for {@code long}
|
||||
* inputs and a BigInteger-backed API for full 2's-complement range support (including
|
||||
* {@code Long.MIN_VALUE}). The {@code long} implementation is efficient and avoids
|
||||
* division/modulo operations. For edge-cases that overflow signed-64-bit ranges
|
||||
* (e.g., gcd(Long.MIN_VALUE, 0) = 2^63), use the BigInteger API {@code gcdBig}.
|
||||
*
|
||||
* <p>Behaviour:
|
||||
* <ul>
|
||||
* <li>{@code gcd(long,long)} : returns non-negative {@code long} gcd for inputs whose
|
||||
* absolute values fit in signed {@code long} (i.e., not causing an unsigned 2^63 result).
|
||||
* If the true gcd does not fit in a signed {@code long} (for example gcd(Long.MIN_VALUE,0) = 2^63)
|
||||
* this method will delegate to BigInteger and throw {@link ArithmeticException} if the
|
||||
* BigInteger result does not fit into a signed {@code long}.</li>
|
||||
* <li>{@code gcdBig(BigInteger, BigInteger)} : returns the exact gcd as a {@link BigInteger}
|
||||
* and works for the full signed-64-bit range and beyond.</li>
|
||||
* </ul>
|
||||
*/
|
||||
public final class BitwiseGCD {
|
||||
|
||||
private BitwiseGCD() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes GCD of two long values using Stein's algorithm (binary GCD).
|
||||
* <p>Handles negative inputs. If either input is {@code Long.MIN_VALUE} the
|
||||
* method delegates to the BigInteger implementation and will throw {@link ArithmeticException}
|
||||
* if the result cannot be represented as a signed {@code long}.
|
||||
*
|
||||
* @param a first value (may be negative)
|
||||
* @param b second value (may be negative)
|
||||
* @return non-negative gcd as a {@code long}
|
||||
* @throws ArithmeticException when the exact gcd does not fit into a signed {@code long}
|
||||
*/
|
||||
public static long gcd(long a, long b) {
|
||||
// Trivial cases
|
||||
if (a == 0L) {
|
||||
return absOrThrowIfOverflow(b);
|
||||
}
|
||||
if (b == 0L) {
|
||||
return absOrThrowIfOverflow(a);
|
||||
}
|
||||
|
||||
// If either is Long.MIN_VALUE, absolute value doesn't fit into signed long.
|
||||
if (a == Long.MIN_VALUE || b == Long.MIN_VALUE) {
|
||||
// Delegate to BigInteger and try to return a long if it fits
|
||||
BigInteger g = gcdBig(BigInteger.valueOf(a), BigInteger.valueOf(b));
|
||||
return g.longValueExact();
|
||||
}
|
||||
|
||||
// Work with non-negative long values now (safe because we excluded Long.MIN_VALUE)
|
||||
a = (a < 0) ? -a : a;
|
||||
b = (b < 0) ? -b : b;
|
||||
|
||||
// Count common factors of 2
|
||||
int commonTwos = Long.numberOfTrailingZeros(a | b);
|
||||
|
||||
// Remove all factors of 2 from a
|
||||
a >>= Long.numberOfTrailingZeros(a);
|
||||
|
||||
while (b != 0L) {
|
||||
// Remove all factors of 2 from b
|
||||
b >>= Long.numberOfTrailingZeros(b);
|
||||
|
||||
// Now both a and b are odd. Ensure a <= b
|
||||
if (a > b) {
|
||||
long tmp = a;
|
||||
a = b;
|
||||
b = tmp;
|
||||
}
|
||||
|
||||
// b >= a; subtract a from b (result is even)
|
||||
b = b - a;
|
||||
}
|
||||
|
||||
// Restore common powers of two
|
||||
return a << commonTwos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper to return absolute value of x unless x == Long.MIN_VALUE, in which
|
||||
* case we delegate to BigInteger and throw to indicate overflow.
|
||||
*/
|
||||
private static long absOrThrowIfOverflow(long x) {
|
||||
if (x == Long.MIN_VALUE) {
|
||||
// |Long.MIN_VALUE| = 2^63 which does not fit into signed long
|
||||
throw new ArithmeticException("Absolute value of Long.MIN_VALUE does not fit into signed long. Use gcdBig() for full-range support.");
|
||||
}
|
||||
return (x < 0) ? -x : x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes GCD for an array of {@code long} values. Returns 0 for empty/null arrays.
|
||||
* If any intermediate gcd cannot be represented in signed long (rare), an ArithmeticException
|
||||
* will be thrown.
|
||||
*/
|
||||
public static long gcd(long... values) {
|
||||
|
||||
if (values == null || values.length == 0) {
|
||||
return 0L;
|
||||
}
|
||||
long result = values[0];
|
||||
for (int i = 1; i < values.length; i++) {
|
||||
result = gcd(result, values[i]);
|
||||
if (result == 1L) {
|
||||
return 1L; // early exit
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger-backed gcd that works for the full integer range (and beyond).
|
||||
* This is the recommended method when inputs may be Long.MIN_VALUE or when you
|
||||
* need an exact result even if it is greater than Long.MAX_VALUE.
|
||||
* @param a first value (may be negative)
|
||||
* @param b second value (may be negative)
|
||||
* @return non-negative gcd as a {@link BigInteger}
|
||||
*/
|
||||
public static BigInteger gcdBig(BigInteger a, BigInteger b) {
|
||||
|
||||
if (a == null || b == null) {
|
||||
throw new NullPointerException("Arguments must not be null");
|
||||
}
|
||||
return a.abs().gcd(b.abs());
|
||||
}
|
||||
|
||||
/**
|
||||
* Convenience overload that accepts signed-64 inputs and returns BigInteger gcd.
|
||||
*/
|
||||
public static BigInteger gcdBig(long a, long b) {
|
||||
return gcdBig(BigInteger.valueOf(a), BigInteger.valueOf(b));
|
||||
}
|
||||
|
||||
/**
|
||||
* int overload for convenience.
|
||||
*/
|
||||
public static int gcd(int a, int b) {
|
||||
return (int) gcd((long) a, (long) b);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,110 @@
|
||||
package com.thealgorithms.bitmanipulation;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
public class BitwiseGCDTest {
|
||||
|
||||
@Test
|
||||
public void testGcdBasic() {
|
||||
assertEquals(6L, BitwiseGCD.gcd(48L, 18L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdZeroAndNonZero() {
|
||||
assertEquals(5L, BitwiseGCD.gcd(0L, 5L));
|
||||
assertEquals(5L, BitwiseGCD.gcd(5L, 0L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdBothZero() {
|
||||
assertEquals(0L, BitwiseGCD.gcd(0L, 0L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdNegativeInputs() {
|
||||
assertEquals(6L, BitwiseGCD.gcd(-48L, 18L));
|
||||
assertEquals(6L, BitwiseGCD.gcd(48L, -18L));
|
||||
assertEquals(6L, BitwiseGCD.gcd(-48L, -18L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdIntOverload() {
|
||||
assertEquals(6, BitwiseGCD.gcd(48, 18));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdArray() {
|
||||
long[] values = {48L, 18L, 6L};
|
||||
assertEquals(6L, BitwiseGCD.gcd(values));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdEmptyArray() {
|
||||
long[] empty = {};
|
||||
assertEquals(0L, BitwiseGCD.gcd(empty));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdCoprime() {
|
||||
assertEquals(1L, BitwiseGCD.gcd(17L, 13L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdPowersOfTwo() {
|
||||
assertEquals(1024L, BitwiseGCD.gcd(1L << 20, 1L << 10));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdLargeNumbers() {
|
||||
assertEquals(6L, BitwiseGCD.gcd(270L, 192L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdEarlyExitArray() {
|
||||
long[] manyCoprimes = {7L, 11L, 13L, 17L, 19L, 23L, 29L};
|
||||
assertEquals(1L, BitwiseGCD.gcd(manyCoprimes));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdSameNumbers() {
|
||||
assertEquals(42L, BitwiseGCD.gcd(42L, 42L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdLongMinValueBigInteger() {
|
||||
// gcd(Long.MIN_VALUE, 0) = |Long.MIN_VALUE| = 2^63; must use BigInteger to represent it
|
||||
BigInteger expected = BigInteger.ONE.shiftLeft(63); // 2^63
|
||||
assertEquals(expected, BitwiseGCD.gcdBig(Long.MIN_VALUE, 0L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdLongMinValueLongOverloadThrows() {
|
||||
// The long overload cannot return 2^63 as a positive signed long, so it must throw
|
||||
assertThrows(ArithmeticException.class, () -> BitwiseGCD.gcd(Long.MIN_VALUE, 0L));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdWithLongMinAndOther() {
|
||||
// gcd(Long.MIN_VALUE, 2^10) should be 2^10
|
||||
long p = 1L << 10;
|
||||
BigInteger expected = BigInteger.valueOf(p);
|
||||
assertEquals(expected, BitwiseGCD.gcdBig(Long.MIN_VALUE, p));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdWithBothLongMin() {
|
||||
// gcd(Long.MIN_VALUE, Long.MIN_VALUE) = 2^63
|
||||
BigInteger expected = BigInteger.ONE.shiftLeft(63);
|
||||
assertEquals(expected, BitwiseGCD.gcdBig(Long.MIN_VALUE, Long.MIN_VALUE));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGcdEdgeCasesMixed() {
|
||||
assertEquals(1L, BitwiseGCD.gcd(1L, Long.MAX_VALUE));
|
||||
assertEquals(1L, BitwiseGCD.gcd(Long.MAX_VALUE, 1L));
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user