Added BitwiseGCD.java and BitwiseGCDTest.java (#6545)

This commit is contained in:
Hetu Kariya
2025-09-27 16:32:34 +05:30
committed by GitHub
parent 09cacae1c3
commit fb12971fd6
2 changed files with 257 additions and 0 deletions

View File

@@ -0,0 +1,147 @@
package com.thealgorithms.bitmanipulation;
import java.math.BigInteger;
/**
* Bitwise GCD implementation with full-range support utilities.
*
* <p>This class provides a fast binary (Stein's) GCD implementation for {@code long}
* inputs and a BigInteger-backed API for full 2's-complement range support (including
* {@code Long.MIN_VALUE}). The {@code long} implementation is efficient and avoids
* division/modulo operations. For edge-cases that overflow signed-64-bit ranges
* (e.g., gcd(Long.MIN_VALUE, 0) = 2^63), use the BigInteger API {@code gcdBig}.
*
* <p>Behaviour:
* <ul>
* <li>{@code gcd(long,long)} : returns non-negative {@code long} gcd for inputs whose
* absolute values fit in signed {@code long} (i.e., not causing an unsigned 2^63 result).
* If the true gcd does not fit in a signed {@code long} (for example gcd(Long.MIN_VALUE,0) = 2^63)
* this method will delegate to BigInteger and throw {@link ArithmeticException} if the
* BigInteger result does not fit into a signed {@code long}.</li>
* <li>{@code gcdBig(BigInteger, BigInteger)} : returns the exact gcd as a {@link BigInteger}
* and works for the full signed-64-bit range and beyond.</li>
* </ul>
*/
public final class BitwiseGCD {
private BitwiseGCD() {
}
/**
* Computes GCD of two long values using Stein's algorithm (binary GCD).
* <p>Handles negative inputs. If either input is {@code Long.MIN_VALUE} the
* method delegates to the BigInteger implementation and will throw {@link ArithmeticException}
* if the result cannot be represented as a signed {@code long}.
*
* @param a first value (may be negative)
* @param b second value (may be negative)
* @return non-negative gcd as a {@code long}
* @throws ArithmeticException when the exact gcd does not fit into a signed {@code long}
*/
public static long gcd(long a, long b) {
// Trivial cases
if (a == 0L) {
return absOrThrowIfOverflow(b);
}
if (b == 0L) {
return absOrThrowIfOverflow(a);
}
// If either is Long.MIN_VALUE, absolute value doesn't fit into signed long.
if (a == Long.MIN_VALUE || b == Long.MIN_VALUE) {
// Delegate to BigInteger and try to return a long if it fits
BigInteger g = gcdBig(BigInteger.valueOf(a), BigInteger.valueOf(b));
return g.longValueExact();
}
// Work with non-negative long values now (safe because we excluded Long.MIN_VALUE)
a = (a < 0) ? -a : a;
b = (b < 0) ? -b : b;
// Count common factors of 2
int commonTwos = Long.numberOfTrailingZeros(a | b);
// Remove all factors of 2 from a
a >>= Long.numberOfTrailingZeros(a);
while (b != 0L) {
// Remove all factors of 2 from b
b >>= Long.numberOfTrailingZeros(b);
// Now both a and b are odd. Ensure a <= b
if (a > b) {
long tmp = a;
a = b;
b = tmp;
}
// b >= a; subtract a from b (result is even)
b = b - a;
}
// Restore common powers of two
return a << commonTwos;
}
/**
* Helper to return absolute value of x unless x == Long.MIN_VALUE, in which
* case we delegate to BigInteger and throw to indicate overflow.
*/
private static long absOrThrowIfOverflow(long x) {
if (x == Long.MIN_VALUE) {
// |Long.MIN_VALUE| = 2^63 which does not fit into signed long
throw new ArithmeticException("Absolute value of Long.MIN_VALUE does not fit into signed long. Use gcdBig() for full-range support.");
}
return (x < 0) ? -x : x;
}
/**
* Computes GCD for an array of {@code long} values. Returns 0 for empty/null arrays.
* If any intermediate gcd cannot be represented in signed long (rare), an ArithmeticException
* will be thrown.
*/
public static long gcd(long... values) {
if (values == null || values.length == 0) {
return 0L;
}
long result = values[0];
for (int i = 1; i < values.length; i++) {
result = gcd(result, values[i]);
if (result == 1L) {
return 1L; // early exit
}
}
return result;
}
/**
* BigInteger-backed gcd that works for the full integer range (and beyond).
* This is the recommended method when inputs may be Long.MIN_VALUE or when you
* need an exact result even if it is greater than Long.MAX_VALUE.
* @param a first value (may be negative)
* @param b second value (may be negative)
* @return non-negative gcd as a {@link BigInteger}
*/
public static BigInteger gcdBig(BigInteger a, BigInteger b) {
if (a == null || b == null) {
throw new NullPointerException("Arguments must not be null");
}
return a.abs().gcd(b.abs());
}
/**
* Convenience overload that accepts signed-64 inputs and returns BigInteger gcd.
*/
public static BigInteger gcdBig(long a, long b) {
return gcdBig(BigInteger.valueOf(a), BigInteger.valueOf(b));
}
/**
* int overload for convenience.
*/
public static int gcd(int a, int b) {
return (int) gcd((long) a, (long) b);
}
}

View File

@@ -0,0 +1,110 @@
package com.thealgorithms.bitmanipulation;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import java.math.BigInteger;
import org.junit.jupiter.api.Test;
public class BitwiseGCDTest {
@Test
public void testGcdBasic() {
assertEquals(6L, BitwiseGCD.gcd(48L, 18L));
}
@Test
public void testGcdZeroAndNonZero() {
assertEquals(5L, BitwiseGCD.gcd(0L, 5L));
assertEquals(5L, BitwiseGCD.gcd(5L, 0L));
}
@Test
public void testGcdBothZero() {
assertEquals(0L, BitwiseGCD.gcd(0L, 0L));
}
@Test
public void testGcdNegativeInputs() {
assertEquals(6L, BitwiseGCD.gcd(-48L, 18L));
assertEquals(6L, BitwiseGCD.gcd(48L, -18L));
assertEquals(6L, BitwiseGCD.gcd(-48L, -18L));
}
@Test
public void testGcdIntOverload() {
assertEquals(6, BitwiseGCD.gcd(48, 18));
}
@Test
public void testGcdArray() {
long[] values = {48L, 18L, 6L};
assertEquals(6L, BitwiseGCD.gcd(values));
}
@Test
public void testGcdEmptyArray() {
long[] empty = {};
assertEquals(0L, BitwiseGCD.gcd(empty));
}
@Test
public void testGcdCoprime() {
assertEquals(1L, BitwiseGCD.gcd(17L, 13L));
}
@Test
public void testGcdPowersOfTwo() {
assertEquals(1024L, BitwiseGCD.gcd(1L << 20, 1L << 10));
}
@Test
public void testGcdLargeNumbers() {
assertEquals(6L, BitwiseGCD.gcd(270L, 192L));
}
@Test
public void testGcdEarlyExitArray() {
long[] manyCoprimes = {7L, 11L, 13L, 17L, 19L, 23L, 29L};
assertEquals(1L, BitwiseGCD.gcd(manyCoprimes));
}
@Test
public void testGcdSameNumbers() {
assertEquals(42L, BitwiseGCD.gcd(42L, 42L));
}
@Test
public void testGcdLongMinValueBigInteger() {
// gcd(Long.MIN_VALUE, 0) = |Long.MIN_VALUE| = 2^63; must use BigInteger to represent it
BigInteger expected = BigInteger.ONE.shiftLeft(63); // 2^63
assertEquals(expected, BitwiseGCD.gcdBig(Long.MIN_VALUE, 0L));
}
@Test
public void testGcdLongMinValueLongOverloadThrows() {
// The long overload cannot return 2^63 as a positive signed long, so it must throw
assertThrows(ArithmeticException.class, () -> BitwiseGCD.gcd(Long.MIN_VALUE, 0L));
}
@Test
public void testGcdWithLongMinAndOther() {
// gcd(Long.MIN_VALUE, 2^10) should be 2^10
long p = 1L << 10;
BigInteger expected = BigInteger.valueOf(p);
assertEquals(expected, BitwiseGCD.gcdBig(Long.MIN_VALUE, p));
}
@Test
public void testGcdWithBothLongMin() {
// gcd(Long.MIN_VALUE, Long.MIN_VALUE) = 2^63
BigInteger expected = BigInteger.ONE.shiftLeft(63);
assertEquals(expected, BitwiseGCD.gcdBig(Long.MIN_VALUE, Long.MIN_VALUE));
}
@Test
public void testGcdEdgeCasesMixed() {
assertEquals(1L, BitwiseGCD.gcd(1L, Long.MAX_VALUE));
assertEquals(1L, BitwiseGCD.gcd(Long.MAX_VALUE, 1L));
}
}