mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-10 21:43:15 +08:00
Formatted with Google Java Formatter
This commit is contained in:
@ -15,15 +15,13 @@ public class BruteForceKnapsack {
|
||||
// capacity W
|
||||
static int knapSack(int W, int wt[], int val[], int n) {
|
||||
// Base Case
|
||||
if (n == 0 || W == 0)
|
||||
return 0;
|
||||
if (n == 0 || W == 0) return 0;
|
||||
|
||||
// If weight of the nth item is
|
||||
// more than Knapsack capacity W,
|
||||
// then this item cannot be included
|
||||
// in the optimal solution
|
||||
if (wt[n - 1] > W)
|
||||
return knapSack(W, wt, val, n - 1);
|
||||
if (wt[n - 1] > W) return knapSack(W, wt, val, n - 1);
|
||||
|
||||
// Return the maximum of two cases:
|
||||
// (1) nth item included
|
||||
|
@ -16,12 +16,9 @@ public class DyanamicProgrammingKnapsack {
|
||||
// Build table K[][] in bottom up manner
|
||||
for (i = 0; i <= n; i++) {
|
||||
for (w = 0; w <= W; w++) {
|
||||
if (i == 0 || w == 0)
|
||||
K[i][w] = 0;
|
||||
else if (wt[i - 1] <= w)
|
||||
K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
||||
else
|
||||
K[i][w] = K[i - 1][w];
|
||||
if (i == 0 || w == 0) K[i][w] = 0;
|
||||
else if (wt[i - 1] <= w) K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
||||
else K[i][w] = K[i - 1][w];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -13,22 +13,21 @@ public class MemoizationTechniqueKnapsack {
|
||||
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
||||
|
||||
// Base condition
|
||||
if (n == 0 || W == 0)
|
||||
return 0;
|
||||
if (n == 0 || W == 0) return 0;
|
||||
|
||||
if (dp[n][W] != -1)
|
||||
return dp[n][W];
|
||||
if (dp[n][W] != -1) return dp[n][W];
|
||||
|
||||
if (wt[n - 1] > W)
|
||||
|
||||
// Store the value of function call
|
||||
// stack in table before return
|
||||
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
||||
|
||||
else
|
||||
|
||||
// Return value of table after storing
|
||||
return dp[n][W] = max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
||||
return dp[n][W] =
|
||||
max(
|
||||
(val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
||||
knapSackRec(W, wt, val, n - 1, dp));
|
||||
}
|
||||
|
||||
@ -39,9 +38,7 @@ public class MemoizationTechniqueKnapsack {
|
||||
|
||||
// Loop to initially filled the
|
||||
// table with -1
|
||||
for (int i = 0; i < N + 1; i++)
|
||||
for (int j = 0; j < W + 1; j++)
|
||||
dp[i][j] = -1;
|
||||
for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1;
|
||||
|
||||
return knapSackRec(W, wt, val, N, dp);
|
||||
}
|
||||
|
Reference in New Issue
Block a user