Formatted with Google Java Formatter

This commit is contained in:
github-actions
2021-09-17 17:03:36 +00:00
parent e6fb81d1bb
commit f981a2b979
3 changed files with 94 additions and 102 deletions

View File

@ -15,15 +15,13 @@ public class BruteForceKnapsack {
// capacity W
static int knapSack(int W, int wt[], int val[], int n) {
// Base Case
if (n == 0 || W == 0)
return 0;
if (n == 0 || W == 0) return 0;
// If weight of the nth item is
// more than Knapsack capacity W,
// then this item cannot be included
// in the optimal solution
if (wt[n - 1] > W)
return knapSack(W, wt, val, n - 1);
if (wt[n - 1] > W) return knapSack(W, wt, val, n - 1);
// Return the maximum of two cases:
// (1) nth item included

View File

@ -16,12 +16,9 @@ public class DyanamicProgrammingKnapsack {
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++) {
for (w = 0; w <= W; w++) {
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
if (i == 0 || w == 0) K[i][w] = 0;
else if (wt[i - 1] <= w) K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
else K[i][w] = K[i - 1][w];
}
}

View File

@ -13,22 +13,21 @@ public class MemoizationTechniqueKnapsack {
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
// Base condition
if (n == 0 || W == 0)
return 0;
if (n == 0 || W == 0) return 0;
if (dp[n][W] != -1)
return dp[n][W];
if (dp[n][W] != -1) return dp[n][W];
if (wt[n - 1] > W)
// Store the value of function call
// stack in table before return
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
else
// Return value of table after storing
return dp[n][W] = max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
return dp[n][W] =
max(
(val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
knapSackRec(W, wt, val, n - 1, dp));
}
@ -39,9 +38,7 @@ public class MemoizationTechniqueKnapsack {
// Loop to initially filled the
// table with -1
for (int i = 0; i < N + 1; i++)
for (int j = 0; j < W + 1; j++)
dp[i][j] = -1;
for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1;
return knapSackRec(W, wt, val, N, dp);
}