mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-19 09:50:03 +08:00
Formatted with Google Java Formatter
This commit is contained in:
@ -1,59 +1,56 @@
|
||||
package DynamicProgramming;
|
||||
// Here is the top-down approach of
|
||||
// Here is the top-down approach of
|
||||
// dynamic programming
|
||||
public class MemoizationTechniqueKnapsack {
|
||||
|
||||
//A utility function that returns
|
||||
//maximum of two integers
|
||||
static int max(int a, int b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
// A utility function that returns
|
||||
// maximum of two integers
|
||||
static int max(int a, int b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
|
||||
//Returns the value of maximum profit
|
||||
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
||||
// Returns the value of maximum profit
|
||||
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
||||
|
||||
// Base condition
|
||||
if (n == 0 || W == 0)
|
||||
return 0;
|
||||
// Base condition
|
||||
if (n == 0 || W == 0) return 0;
|
||||
|
||||
if (dp[n][W] != -1)
|
||||
return dp[n][W];
|
||||
if (dp[n][W] != -1) return dp[n][W];
|
||||
|
||||
if (wt[n - 1] > W)
|
||||
if (wt[n - 1] > W)
|
||||
|
||||
// Store the value of function call
|
||||
// stack in table before return
|
||||
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
||||
// Store the value of function call
|
||||
// stack in table before return
|
||||
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
||||
else
|
||||
|
||||
else
|
||||
// Return value of table after storing
|
||||
return dp[n][W] =
|
||||
max(
|
||||
(val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
||||
knapSackRec(W, wt, val, n - 1, dp));
|
||||
}
|
||||
|
||||
// Return value of table after storing
|
||||
return dp[n][W] = max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
||||
knapSackRec(W, wt, val, n - 1, dp));
|
||||
}
|
||||
static int knapSack(int W, int wt[], int val[], int N) {
|
||||
|
||||
static int knapSack(int W, int wt[], int val[], int N) {
|
||||
// Declare the table dynamically
|
||||
int dp[][] = new int[N + 1][W + 1];
|
||||
|
||||
// Declare the table dynamically
|
||||
int dp[][] = new int[N + 1][W + 1];
|
||||
// Loop to initially filled the
|
||||
// table with -1
|
||||
for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1;
|
||||
|
||||
// Loop to initially filled the
|
||||
// table with -1
|
||||
for (int i = 0; i < N + 1; i++)
|
||||
for (int j = 0; j < W + 1; j++)
|
||||
dp[i][j] = -1;
|
||||
return knapSackRec(W, wt, val, N, dp);
|
||||
}
|
||||
|
||||
return knapSackRec(W, wt, val, N, dp);
|
||||
}
|
||||
// Driver Code
|
||||
public static void main(String[] args) {
|
||||
int val[] = {60, 100, 120};
|
||||
int wt[] = {10, 20, 30};
|
||||
|
||||
//Driver Code
|
||||
public static void main(String[] args) {
|
||||
int val[] = { 60, 100, 120 };
|
||||
int wt[] = { 10, 20, 30 };
|
||||
int W = 50;
|
||||
int N = val.length;
|
||||
|
||||
int W = 50;
|
||||
int N = val.length;
|
||||
|
||||
System.out.println(knapSack(W, wt, val, N));
|
||||
}
|
||||
System.out.println(knapSack(W, wt, val, N));
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user