Extend Graph Algorithms: Added Two Popular Algorithms: BronKerbosch, EdmondsKarp (#6576)

* Bron–Kerbosch algorithm added.

* test:Bron–Kerbosch algorithm added.

* lint checked.

* clang-format linting checked.

* lint checked in remote

Removed duplicate import statements for assertions.

* Remove unnecessary blank line in BronKerboschTest

* EdmondsKarp algorithm added.

* reformatted

---------

Co-authored-by: Oleksandr Klymenko <alexanderklmn@gmail.com>
This commit is contained in:
Sivasuthan Sukumar
2025-10-02 01:14:43 +05:30
committed by GitHub
parent 05ceb192c9
commit f8f315eaa8
4 changed files with 348 additions and 0 deletions

View File

@@ -0,0 +1,107 @@
package com.thealgorithms.graph;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Queue;
/**
* Implementation of the EdmondsKarp algorithm for computing the maximum flow of a directed graph.
* <p>
* The algorithm runs in O(V * E^2) time and is a specific implementation of the FordFulkerson
* method where the augmenting paths are found using breadth-first search (BFS) to ensure the
* shortest augmenting paths (in terms of the number of edges) are used.
* </p>
*
* <p>The graph is represented with a capacity matrix where {@code capacity[u][v]} denotes the
* capacity of the edge from {@code u} to {@code v}. Negative capacities are not allowed.</p>
*
* @author <a href="https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm">Wikipedia: EdmondsKarp algorithm</a>
*/
public final class EdmondsKarp {
private EdmondsKarp() {
}
/**
* Computes the maximum flow from {@code source} to {@code sink} in the provided capacity matrix.
*
* @param capacity the capacity matrix representing the directed graph; must be square and non-null
* @param source the source vertex index
* @param sink the sink vertex index
* @return the value of the maximum flow between {@code source} and {@code sink}
* @throws IllegalArgumentException if the matrix is {@code null}, not square, contains negative
* capacities, or if {@code source} / {@code sink} indices are invalid
*/
public static int maxFlow(int[][] capacity, int source, int sink) {
if (capacity == null || capacity.length == 0) {
throw new IllegalArgumentException("Capacity matrix must not be null or empty");
}
final int n = capacity.length;
for (int row = 0; row < n; row++) {
if (capacity[row] == null || capacity[row].length != n) {
throw new IllegalArgumentException("Capacity matrix must be square");
}
for (int col = 0; col < n; col++) {
if (capacity[row][col] < 0) {
throw new IllegalArgumentException("Capacities must be non-negative");
}
}
}
if (source < 0 || source >= n || sink < 0 || sink >= n) {
throw new IllegalArgumentException("Source and sink must be valid vertex indices");
}
if (source == sink) {
return 0;
}
final int[][] residual = new int[n][n];
for (int i = 0; i < n; i++) {
residual[i] = Arrays.copyOf(capacity[i], n);
}
final int[] parent = new int[n];
int maxFlow = 0;
while (bfs(residual, source, sink, parent)) {
int pathFlow = Integer.MAX_VALUE;
for (int v = sink; v != source; v = parent[v]) {
int u = parent[v];
pathFlow = Math.min(pathFlow, residual[u][v]);
}
for (int v = sink; v != source; v = parent[v]) {
int u = parent[v];
residual[u][v] -= pathFlow;
residual[v][u] += pathFlow;
}
maxFlow += pathFlow;
}
return maxFlow;
}
private static boolean bfs(int[][] residual, int source, int sink, int[] parent) {
Arrays.fill(parent, -1);
parent[source] = source;
Queue<Integer> queue = new ArrayDeque<>();
queue.add(source);
while (!queue.isEmpty()) {
int u = queue.poll();
for (int v = 0; v < residual.length; v++) {
if (residual[u][v] > 0 && parent[v] == -1) {
parent[v] = u;
if (v == sink) {
return true;
}
queue.add(v);
}
}
}
return false;
}
}