mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 17:56:02 +08:00
Added MatrixFastPower.java
This commit is contained in:
139
DataStructures/Matrix/MatrixFastPower.java
Normal file
139
DataStructures/Matrix/MatrixFastPower.java
Normal file
@ -0,0 +1,139 @@
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
*
|
||||
* Java implementation of Matrix fast power
|
||||
* It can calculate the high power of constant Matrix with O( log(K) )
|
||||
* where K is the power of the Matrix
|
||||
*
|
||||
* In order to do that, Matrix must be square Matrix ( columns equals rows)
|
||||
*
|
||||
* Notice : large power of Matrix may cause overflow
|
||||
*
|
||||
*
|
||||
* other Matrix basic operator is based on @author Kyler Smith, 2017
|
||||
*
|
||||
* @author DDullahan, 2018
|
||||
*
|
||||
*/
|
||||
|
||||
class Matrix {
|
||||
private int[][] data;
|
||||
|
||||
/**
|
||||
* Constructor for the matrix takes in a 2D array
|
||||
*
|
||||
* @param pData
|
||||
*/
|
||||
public Matrix(int[][] pData) {
|
||||
|
||||
/** Make a deep copy of the data */
|
||||
if(pData.length != 0) {
|
||||
int[][] newData = new int[pData.length][pData[0].length];
|
||||
|
||||
for(int i = 0; i < pData.length; i++)
|
||||
for(int j = 0; j < pData[0].length; j++)
|
||||
newData[i][j] = pData[i][j];
|
||||
|
||||
this.data = newData;
|
||||
} else {
|
||||
this.data = null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the element specified by the given location
|
||||
*
|
||||
* @param x : x cooridinate
|
||||
* @param y : y cooridinate
|
||||
* @return int : value at location
|
||||
*/
|
||||
public int getElement(int x, int y) {
|
||||
return data[x][y];
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of rows in the Matrix
|
||||
*
|
||||
* @return rows
|
||||
*/
|
||||
public int getRows() {
|
||||
if(this.data == null)
|
||||
return 0;
|
||||
|
||||
return data.length;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of rows in the Matrix
|
||||
*
|
||||
* @return columns
|
||||
*/
|
||||
public int getColumns() {
|
||||
if(this.data == null)
|
||||
return 0;
|
||||
|
||||
return data[0].length;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies this matrix with another matrix.
|
||||
*
|
||||
* @param other : Matrix to be multiplied with
|
||||
* @return product
|
||||
*/
|
||||
public Matrix multiply(Matrix other) throws RuntimeException {
|
||||
|
||||
int[][] newData = new int[this.data.length][other.getColumns()];
|
||||
|
||||
if(this.getColumns() != other.getRows())
|
||||
throw new RuntimeException("The two matrices cannot be multiplied.");
|
||||
|
||||
int sum;
|
||||
|
||||
for (int i = 0; i < this.getRows(); ++i)
|
||||
for(int j = 0; j < other.getColumns(); ++j) {
|
||||
sum = 0;
|
||||
|
||||
for(int k = 0; k < this.getColumns(); ++k) {
|
||||
sum += this.data[i][k] * other.getElement(k, j);
|
||||
}
|
||||
|
||||
newData[i][j] = sum;
|
||||
}
|
||||
|
||||
return new Matrix(newData);
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrix Fast Power
|
||||
*
|
||||
* @param k : power of Matrix
|
||||
* @return product
|
||||
*/
|
||||
public Matrix MatrixFastPower(int k) throws RuntimeException {
|
||||
|
||||
if(this.getColumns() != this.getRows())
|
||||
throw new RuntimeException("Matrix is not square Matrix.");
|
||||
|
||||
int[][] newData = new int[this.getColumns()][this.getRows()];
|
||||
|
||||
for(int i = 0; i < this.getColumns(); i++)
|
||||
newData[i][i] = 1;
|
||||
|
||||
Matrix newMatrix = new Matrix(newData),
|
||||
coMatrix = new Matrix(this.data);
|
||||
|
||||
while(k != 0) {
|
||||
|
||||
if((k & 1) != 0)
|
||||
newMatrix = newMatrix.multiply(coMatrix);
|
||||
|
||||
k >>= 1;
|
||||
coMatrix = coMatrix.multiply(coMatrix);
|
||||
|
||||
}
|
||||
|
||||
return newMatrix;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user