mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
Format code with prettier (#3375)
This commit is contained in:
@@ -2,7 +2,6 @@
|
||||
* Github : https://github.com/siddhant2002
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
|
||||
* The robot can only move either down or right at any point in time.
|
||||
@@ -17,51 +16,46 @@ package com.thealgorithms.dynamicprogramming;
|
||||
import java.util.*;
|
||||
|
||||
public class UniquePaths {
|
||||
public static boolean uniquePaths(int m , int n , int ans) {
|
||||
int []dp = new int[n];
|
||||
Arrays.fill(dp,1);
|
||||
for (int i=1; i<m; i++)
|
||||
{
|
||||
for (int j=1; j<n; j++)
|
||||
{
|
||||
dp[j] += dp[j-1];
|
||||
|
||||
public static boolean uniquePaths(int m, int n, int ans) {
|
||||
int[] dp = new int[n];
|
||||
Arrays.fill(dp, 1);
|
||||
for (int i = 1; i < m; i++) {
|
||||
for (int j = 1; j < n; j++) {
|
||||
dp[j] += dp[j - 1];
|
||||
}
|
||||
}
|
||||
return dp[n-1]==ans;
|
||||
return dp[n - 1] == ans;
|
||||
// return true if predicted answer matches with expected answer
|
||||
}
|
||||
|
||||
// The above method runs in O(n) time
|
||||
public static boolean uniquePaths2(int m , int n , int ans) {
|
||||
public static boolean uniquePaths2(int m, int n, int ans) {
|
||||
int dp[][] = new int[m][n];
|
||||
for (int i=0; i<m; i++)
|
||||
{
|
||||
for (int i = 0; i < m; i++) {
|
||||
dp[i][0] = 1;
|
||||
}
|
||||
for (int j=0; j<n; j++)
|
||||
{
|
||||
for (int j = 0; j < n; j++) {
|
||||
dp[0][j] = 1;
|
||||
}
|
||||
for (int i=1; i<m; i++)
|
||||
{
|
||||
for (int j=1; j<n; j++)
|
||||
{
|
||||
dp[i][j]=dp[i-1][j]+dp[i][j-1];
|
||||
for (int i = 1; i < m; i++) {
|
||||
for (int j = 1; j < n; j++) {
|
||||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
|
||||
}
|
||||
}
|
||||
return dp[m-1][n-1]==ans;
|
||||
return dp[m - 1][n - 1] == ans;
|
||||
// return true if predicted answer matches with expected answer
|
||||
}
|
||||
// The above mthod takes O(m*n) time
|
||||
}
|
||||
/**
|
||||
* OUTPUT :
|
||||
* Input - m = 3, n = 7
|
||||
* Output: it returns either true if expected answer matches with the predicted answer else it returns false
|
||||
* 1st approach Time Complexity : O(n)
|
||||
* Auxiliary Space Complexity : O(n)
|
||||
* Input - m = 3, n = 7
|
||||
* Output: it returns either true if expected answer matches with the predicted answer else it returns false
|
||||
* 2nd approach Time Complexity : O(m*n)
|
||||
* Auxiliary Space Complexity : O(m*n)
|
||||
*/
|
||||
* OUTPUT :
|
||||
* Input - m = 3, n = 7
|
||||
* Output: it returns either true if expected answer matches with the predicted answer else it returns false
|
||||
* 1st approach Time Complexity : O(n)
|
||||
* Auxiliary Space Complexity : O(n)
|
||||
* Input - m = 3, n = 7
|
||||
* Output: it returns either true if expected answer matches with the predicted answer else it returns false
|
||||
* 2nd approach Time Complexity : O(m*n)
|
||||
* Auxiliary Space Complexity : O(m*n)
|
||||
*/
|
||||
|
||||
Reference in New Issue
Block a user