mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-19 01:41:57 +08:00
Add knapsack problem (#2330)
This commit is contained in:
39
DynamicProgramming/DyanamicProgrammingKnapsack.java
Normal file
39
DynamicProgramming/DyanamicProgrammingKnapsack.java
Normal file
@ -0,0 +1,39 @@
|
||||
package DynamicProgramming;
|
||||
|
||||
// A Dynamic Programming based solution
|
||||
// for 0-1 Knapsack problem
|
||||
public class DyanamicProgrammingKnapsack {
|
||||
static int max(int a, int b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
|
||||
// Returns the maximum value that can
|
||||
// be put in a knapsack of capacity W
|
||||
static int knapSack(int W, int wt[], int val[], int n) {
|
||||
int i, w;
|
||||
int K[][] = new int[n + 1][W + 1];
|
||||
|
||||
// Build table K[][] in bottom up manner
|
||||
for (i = 0; i <= n; i++) {
|
||||
for (w = 0; w <= W; w++) {
|
||||
if (i == 0 || w == 0)
|
||||
K[i][w] = 0;
|
||||
else if (wt[i - 1] <= w)
|
||||
K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
||||
else
|
||||
K[i][w] = K[i - 1][w];
|
||||
}
|
||||
}
|
||||
|
||||
return K[n][W];
|
||||
}
|
||||
|
||||
// Driver code
|
||||
public static void main(String args[]) {
|
||||
int val[] = new int[] { 60, 100, 120 };
|
||||
int wt[] = new int[] { 10, 20, 30 };
|
||||
int W = 50;
|
||||
int n = val.length;
|
||||
System.out.println(knapSack(W, wt, val, n));
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user